Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
137187-Thumbnail Image.png
Description
Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials

Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials regarding diabetes in rural Kenya. The resulting documents can easily be adjusted for use in other developing countries.
ContributorsBuchak, Jacqueline (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137205-Thumbnail Image.png
Description
Concurrent with the epidemic of childhood obesity (17% of adolescents), an unprecedented world-wide increase in the prevalence of several adiposity-related complications (including fatty liver disease (hepatic steatosis), type 2 diabetes and early cardiovascular disorders) in this age group, has emerged. Two principle environmental variables play an essential role in the

Concurrent with the epidemic of childhood obesity (17% of adolescents), an unprecedented world-wide increase in the prevalence of several adiposity-related complications (including fatty liver disease (hepatic steatosis), type 2 diabetes and early cardiovascular disorders) in this age group, has emerged. Two principle environmental variables play an essential role in the development and maintenance of obesity and in disturbing glucose homeostasis: a lack of physical exercise and overnutrition, i.e., high carbohydrate and high fat diets (HFD). It was our laboratory's intention to develop a rodent model to examine whether the metabolic instability observed in human pubertal children is also present in maturing rats and whether a HFD during this maturational period enhances adipose-related complications with or without an increase in body weight. We hypothesized that maturing Sprague-Dawley rats would reveal a profile of metabolic disturbances and that a disruption of the hyperbolic arrangement between insulin sensitivity and insulin release would be evident (statistically significant changes in fasting hyperinsulinemia, insulin resistance, and insulin release) indicating a high risk environment for future cardiometabolic diseases. It was observed that pubertal rats are metabolically impaired and that a HFD substantially enhances metabolic deficits with marked disturbance in insulin sensitivity (hyperinsulinemia). Additionally, substantial lipogenesis was observed in visceral and liver tissue, potentially as a result of hyperinsulinemia. Both phenotypes of maturing rats exposed to a HFD (obesity prone and obesity resistant) demonstrated "metabolic obesity" regardless of physical phenotype. These outcomes have relevance in the context of public health, particularly if lipocentricity is viewed as an essential element in the challenge of preventing and/or treating perturbations to the metabolic health of pubertal children.
ContributorsSmith, John Clark (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137039-Thumbnail Image.png
Description
Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address

Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address the lack of knowledge with supplemental educational materials to be partnered with an engineering capstone project that provides a low cost diagnostic test.
ContributorsShawver, Jamie Christine (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136851-Thumbnail Image.png
Description
Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported

Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported and excreted from the body. Using the of morphine and a standard compartment approach this thesis aimed at projecting pharmacokinetics trends of morphine overtime. A Matlab compartment model predicting the transport of morphine through the body can contribute to a better understanding of the concentrations at the systemic level, specifically with respect to a CSF, and what happens when you compare an intravenous injection to a local delivery. Other studies and models commonly utilized patient data over small periods of time2,3,5. An extended period of time will provide information into morphine’s time course after surgery. This model focuses on a compartmentalization of the major organs and the use of a simple Mechalis-Menten enzyme kinetics for the metabolites in the liver. Our results show a CSF concentration of about 1.086×〖10〗^(-12) nmol/L in 6 weeks and 1.0097×〖10〗^(-12) nmol/L in 12 weeks. The concentration profiles in this model are similar to what was expected. The implications of this suggest that patients who reported effects of morphine paste, a locally administered opioid, weeks after the surgery were due to other reasons. In creating a model we can determine important variables and dosage information. This information allows for a greater understanding of what is happening in the body and how to improve surgical outcomes. We propose this study has implications in general research in the pharmacokinetics and dynamics of pharmacology through the body.
ContributorsJacobs, Danielle Renee (Author) / Caplan, Michael (Thesis director) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05