Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 49
Filtering by

Clear all filters

136149-Thumbnail Image.png
Description
The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface

The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. In doing my Capstone project for Intel, a large electronics manufacturing company, I feel it is important to remember the effects of our tools and industry on the environment and to consider the product life cycle in terms other than monetary gain and raw material recycling. To this end I will be discussing how lead is and was used in manufacturing, how it is disposed of, and how this effects the environment including plant, animal, and insect life, as well as ground water contamination. Since the ban was enacted several years ago, I will compare how lead-free alternatives currently in use compare in environmental impact and possibly raise the question of whether we have simply traded one evil for another.
ContributorsBranch Kelly, Marion Zoe (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137694-Thumbnail Image.png
Description
The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in

The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in an internship setting is then given. Finally, a personal account of a project with Intel is expounded upon. This project addressed the unoptimized characterization test time of an Intel package quality control process. It improved throughput by developing a parallel testing method by increasing package carrier capacity and utilizing simultaneous testing. The final design led to a 4x increase of throughput rate.
ContributorsHusein, Sebastian Saint Tsei (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Jarrell, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
136849-Thumbnail Image.png
Description
Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality

Analysis of 4 lesson plans for primary education in which 3D printers are used either to build components or are directly used by students. Provides critique on how proper investment and utilization of this new technology can enrich education and misuse can waste time, money, and even reduce the quality of education.
ContributorsPrzeslica, Michael Cody (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
130929-Thumbnail Image.png
Description
When viewing vitamins and minerals, it is seen that they are essential for human life and vital for pregnancy. When paired with a healthy diet, prenatal supplements can allow for a healthy pregnancy and reduced maternal and infant health problems. Within this thesis, I was able to break down each

When viewing vitamins and minerals, it is seen that they are essential for human life and vital for pregnancy. When paired with a healthy diet, prenatal supplements can allow for a healthy pregnancy and reduced maternal and infant health problems. Within this thesis, I was able to break down each vitamin and mineral necessary for a healthy pregnancy and birth. Further, I had the opportunity to dive into the addition of Omega-3 Fatty Acid during pregnancy to add more evidence to the study.
ContributorsSaad, Sophia Saad (Author) / Adams, James (Thesis director) / Haiwei, Gu (Committee member) / Coleman, Devon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
133266-Thumbnail Image.png
Description
Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength,

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength, flexibility, and lightweight will be instrumental in producing the next generation of athletic wear and sports equipment. Graphene's use in energy comes from its theorized ability to charge a phone battery in seconds or an electric car in minutes. Finally, for electronics, graphene will be used to create faster transistors, flexible electronics, and fully integrated wearable technology.
ContributorsSiegel, Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133286-Thumbnail Image.png
Description
This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a

This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a cane reed, has less variation in quality, and costs less per year than cane reeds. For low-income students in particular, the cost of purchasing cane oboe reeds ($500-$2,000 per year) is simply not feasible. This project was designed to allow oboe to be a more affordable option for all students. Money should not be a factor that limits whether or a not a child is able to explore their interests. The process used to create the synthetic reed prototype involves cold-extrusion of high-density polyethylene in order to induce orientation in the polymer to replicate the uniaxial orientation of fibrous cane. After successful cold-extrusion of a high-density polyethylene (HDPE) cylinder, the sample was made into a reed by following standard reedmaking procedures. Then, the HDPE reed and a cane reed were quantitatively tested for various qualities, including flexural modulus, hardness, and free vibration frequency. The results from the design project are promising and show a successful proof of concept. The first prototype of an oriented HDPE reed demonstrates characteristics of a cane reed. The areas that need the most improvement are the flexural modulus and the stability of the higher overtones, but these areas can be improved with further development of the cold-extrusion process. The second part of this thesis is a survey and analysis focusing on the qualitative comparison of synthetic and cane oboe reeds. The study can be used in the future to refine the design of synthetic reeds, more specifically the cold-extruded high-density polyethylene student oboe reed I designed, to best replicate a cane reed. Rather than approaching this study from a purely engineering mindset, I brought in my own experience as an oboist. Therefore, the opinions of oboists who have a wide range of experience are considered in the survey. A panel of five oboists participated in the survey. They provided their opinion on various aspects of the five reeds, including vibrancy, response, stability, resistance, tone, and overall quality. Each of these metrics are rated on a scale from one to five, from unacceptable to performance quality. According to the survey, a participant's personal, hand-made cane reed is overall the most preferred option. My prototype HDPE student reed must be improved in many areas in order to rank near the other four reeds. However, its vibrancy and resistance already rival that of a Jones student reed. As this is just the first prototype, that is a significant accomplishment. With further refinement of the cold-extrusion and reedmaking method, the other areas of the HDPE reed may be improved, and the reed may eventually compete with the existing synthetic and cane reeds on the market.
ContributorsMitchell, Alexis Jacqueline (Author) / Adams, James (Thesis director) / Schuring, Martin (Committee member) / School of Music (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133888-Thumbnail Image.png
Description
As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However,

As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However, very little research has actually been done on some of these treatments. Additionally, the research that has been done fails to compare these treatments against one another in terms of symptom relief. The Autism Treatment Effectiveness Survey, written by Dr. James Adams, director of the Autism/Asperger's Research Program at ASU, and graduate student/program coordinator Devon Coleman, aims to fill this gap. The survey numerically rates medications based on benefit and adverse effects, in addition to naming specific symptoms that are impacted by the treatments. However, the survey itself was retrospective in nature and requires further evidence to support its claims. Therefore, the purpose of this research paper is to evaluate evidence related to the results of the survey. After the performing an extensive literature review of over 70 different treatments, it appears that the findings of the Autism Treatment Effectiveness Survey are generally well supported. There were a few minor discrepancies regarding the primary benefitted symptom, but there was not enough of a conflict to discount the information from the survey. As research is still ongoing, conclusions cannot yet be drawn for Nutritional Supplements, although the current data looks promising.
ContributorsAnderson, Amy Lynn (Author) / Adams, James (Thesis director) / Coleman, Devon (Committee member) / School of Nutrition and Health Promotion (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134303-Thumbnail Image.png
Description
Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient

Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient amounts of most vitamins and minerals, many people do not consume an adequate diet. During pregnancy, there is an increased need for vitamins and minerals to promote a healthy pregnancy and a healthy baby. Prenatal supplements are intended to supplement a normal diet to ensure that adequate amounts of vitamins and minerals are consumed. The US Food and Drug Administration (FDA) has established Recommended Dietary Allowances for total vitamin/mineral intake from food and supplements, but they have not established recommendations for prenatal supplements. Therefore, there is a very wide variation in the content and quality of prenatal supplements. Many prenatal supplements contain only minimal levels of some vitamins and few or no minerals, in order to minimize cost and the number of pills. This results in insufficient vitamin/mineral supplementation for many women, and hence does not fully protect them or their children from pregnancy complications and health problems. Therefore, we have created our own set of recommendations for prenatal supplements. Our recommendations are based primarily on four sources: 1) FDA's Recommended Daily Allowances for pregnant women, which are estimated to meet the needs of 97.5% of healthy pregnant women. 2) FDA's Tolerable Upper Limit, which is the maximum amount of vitamins/minerals that can be safely consumed without any risk of health problems. 3) National Health and Nutrition Examination Survey (NHANES), which evaluates the average intake of vitamins and minerals by women ages 20-40 years in the US 4) Research studies on vitamin/mineral deficiencies or vitamin/mineral supplementation during pregnancy, and the effect on pregnancy, birth, and child health problems. In summary, the RDA establishes minimum recommended levels of vitamin/mineral intake from all sources, and the NHANES establishes the average intake from foods. The difference is what needs to be consumed in a supplement, on average. However, since people vary greatly in the quality of their diet, and since most vitamins and minerals have a high Tolerable Upper Limit, we generally recommend more than the difference between the RDA and the average NHANES. Vitamins generally have a larger Tolerable Upper Limit than do minerals. So, we recommend that prenatal vitamin/mineral supplements contain 100% of the RDA for most vitamins, and about 50% of the RDA for most minerals. However, based on additional research studies described below, in some cases we vary our recommendations from those averages.
ContributorsSorenson, Jacob (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134636-Thumbnail Image.png
Description
In injection molded plastic parts, knit lines occur where opposing streams of material fuse together while the mold cavity fills. When parts with knit lines experience external loading, the knit lines cause areas of mechanical weakness. This weakness is especially drastic in fiber-reinforced polymers due to an unfavorable orientation of

In injection molded plastic parts, knit lines occur where opposing streams of material fuse together while the mold cavity fills. When parts with knit lines experience external loading, the knit lines cause areas of mechanical weakness. This weakness is especially drastic in fiber-reinforced polymers due to an unfavorable orientation of fibers at the knit line. A possible way to reduce the impact of knit lines is to incorporate overflow tabs into the mold design. An overflow tab is a chamber attached to the mold cavity that provides an extra space for the end of material flow to occur. Research shows that overflow tabs improve the fiber orientation at the knit line, resulting in increased mechanical strength. The goal of this study is to utilize overflow tabs to optimize the knit line strength of nylon 6-6 that is 30% carbon fiber reinforced. In this project, an initial overflow tab is first designed. Then four modifications are made to the tab design, each altering a separate variable while holding the others constant. The design changes explored for the tab in this project include adding radii to the inlet, shifting the inlet location, increasing the inlet cross-sectional area by 50%, and increasing the tab chamber volume by 50%. Specimens were molded using the initial tab design and the modified tab designs. Testing for this experiment consists of three specimens of each type for three-point bending tests, and five specimens of each type for tensile tests. The material properties analyzed are the flexural modulus, flexural strength, tensile modulus, and tensile strength. From the testing, the tab with the 50% increased volume consistently yielded the highest results and showed large improvement from the initial tab design. However, the other three tab modifications either showed negative change or slight improvement from the initial tab design. Based on the results of this study, the overflow tab volume is the most beneficial design parameter to adjust.
ContributorsJones, Justin Michael (Author) / Adams, James (Thesis director) / Wamsley, Steven (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05