Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 45
Filtering by

Clear all filters

131503-Thumbnail Image.png
Description
Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have

Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have researched the benefits of digital manipulatives and digital environments through student completion of tasks and testing. This study intends to research students’ use of the digital tools and manipulatives, along with the students’ interactions with the digital environment. To this end, I conducted exploratory teaching experiments with two calculus I students.
In the exploratory teaching experiments, students were introduced to a GeoGebra application developed by Fischer (2019), which includes instructional videos and corresponding quizzes, as well as exercises and interactive notepads, where students could use digital tools to construct line segments and circles (corresponding to the physical straight-edge and compass). The application built up the students’ foundational knowledge, culminating in the construction and verbal proof of Euclid’s Elements, Proposition 1 (Euclid, 1733).
The central findings of this thesis are the students’ interactions with the digital environment, with observed changes in their conceptions of radii and circles, and in their use of tools. The students were observed to have conceptions of radii as a process, a geometric shape, and a geometric object. I observed the students’ conceptions of a circle change from a geometric shape to a geometric object, and with that change, observed the students’ use of tools change from a measuring focus to a property focus.
I report a summary of the students’ work and classify their reasoning and actions into the above categories, and an analysis of how the digital environment impacts the students’ conceptions. I also briefly discuss the impact of the findings on pedagogy and future research.
ContributorsSakauye, Noelle Marie (Author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131992-Thumbnail Image.png
Description
Astrobiology, as it is known by official statements and agencies, is “the study of the origin, evolution, distribution, and future of life in the universe” (NASA Astrobiology Insitute , 2018). This definition should suit a dictionary, but it may not accurately describe the research and motivations of practicing astrobiologists. Furthermore,

Astrobiology, as it is known by official statements and agencies, is “the study of the origin, evolution, distribution, and future of life in the universe” (NASA Astrobiology Insitute , 2018). This definition should suit a dictionary, but it may not accurately describe the research and motivations of practicing astrobiologists. Furthermore, it does little to characterize the context in which astrobiologists work. The aim of this project is to explore various social network structures within a large body of astrobiological research, intending to both further define the current motivations of astrobiological research and to lend context to these motivations. In this effort, two Web of Science queries were assembled to search for two contrasting corpora related to astrobiological research. The first search, for astrobiology and its close synonym, exobiology, returned a corpus of 3,229 journal articles. The second search, which includes the first and supplements it with further search terms (see Table 1) returned a corpus of 19,017 journal articles. The metadata for these articles were then used to construct various networks. The resulting networks describe an astrobiology that is well entrenched in other related fields, showcasing the interdisciplinarity of astrobiology in its emergence. The networks also showcase the entrenchment of astrobiology in the sociological context in which it is conducted—namely, its relative dependence on the United States government, which should prompt further discussion amongst astrobiology researchers.
ContributorsBromley, Megan Rachel (Author) / Manfred, Laubichler (Thesis director) / Sara, Walker (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132016-Thumbnail Image.png
Description
Since its introduction to the iPhone X in 2017, Apple’s Face ID has been regarded as more accurate than facial recognition systems used by their competitors due to the use of depth information and infrared images to capture accurate face data. The goal of this thesis is to explore the

Since its introduction to the iPhone X in 2017, Apple’s Face ID has been regarded as more accurate than facial recognition systems used by their competitors due to the use of depth information and infrared images to capture accurate face data. The goal of this thesis is to explore the usability of current smartphone facial recognition systems as represented by the latest generation of Apple’s Face ID. To that end, a research study was conducted to test the usability of Apple’s Face ID on the iPhone XR under diverse, simulated conditions designed to replicate real-life scenarios under which a consumer may need to use Face ID. The goal of the study was to make observations on Face ID usability and create a preliminary understanding of areas in which technology may struggle and/or fail. From the results of the research study, Face ID on the iPhone XR generally performed well under low-light conditions and adapted to minor changes in the conditions under which a face capture is done, but did not do as well when the user did not maintain full eye contact with the camera or when the capture is done at an angle.
ContributorsTang, Xina (Author) / Bazzi, Rida (Thesis director) / Ulrich, Jon (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132019-Thumbnail Image.png
Description
College campuses are one of the most common places for substance abuse. Typically, these substances are thought of to be alcohol, marijuana, and cocaine. However, Adderall is the second most commonly abused drug on college campuses. It is used to treat attention deficit hyperactivity disorder (ADHD). Adderall increases attention span

College campuses are one of the most common places for substance abuse. Typically, these substances are thought of to be alcohol, marijuana, and cocaine. However, Adderall is the second most commonly abused drug on college campuses. It is used to treat attention deficit hyperactivity disorder (ADHD). Adderall increases attention span and focus, so it is also commonly used as a study drug. Students frequently buy Adderall from a friend with a prescription, and use it to stay up all night cramming for an exam or finishing a project. This is a topic that not much research has been done on since Adderall only became widely used starting in the mid 2000’s. Since it is unethical to run experiments to learn more about Adderall use, and there is a limited amount of data online, a different approach had to be taken to explore this issue further. As a mathematics major, I determined that the best way to do so was to create an SIR mathematical model. In this model we have five different populations, or compartments: the population susceptible to Adderall use, people who use Adderall with an Adderall prescription, people who use Adderall without an Adderall prescription, people with an Adderall prescription stop using Adderall, and people without an Adderall prescription stop using Adderall. We also observed the rates at which people move between each population. Using this model, we created a set of differential equations to analyze and run simulations with. Looking at steady state, equilibrium points, stability, best and worst-case scenarios, and parameter impact, we drew conclusions and came up with possible courses of action. Overall, creating this model taught me not only about drug abuse, but about how useful mathematical modeling can be, especially concerning substance abuse.
ContributorsMooney, Taylor Anne (Author) / Wirkus, Stephen (Thesis director) / Caldwell, Wendy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
This research project dug into mathematics in music, exploring the various ways a number series was used in the 20th century to create musical compositions. The Fibonacci Series (FS) is an infinite number series that is created by taking the two previous numbers to create the next, excluding 0 and

This research project dug into mathematics in music, exploring the various ways a number series was used in the 20th century to create musical compositions. The Fibonacci Series (FS) is an infinite number series that is created by taking the two previous numbers to create the next, excluding 0 and 1 at the very start of the series. As the numbers grow larger, the ratios between the numbers of the FS approach the value of another mathematical concept known as the Golden Mean (GM). The GM is so closely related to the series that it is used interchangeably in terms of proportions and overall structure of musical pieces. This is similar to how both the FS and GM are found in aspects of nature, like to all too well-known conch shell spiral.

The FS in music was used in a variety of ways throughout the 20th century, primarily focusing on durations and overall structure in its use. Examples of this are found in Béla Bartók’s Music for Strings, Percussion, and Celeste (1936), Allegro barbaro (1911), Karlheinz Stockhausen’s Klavierstück IX (1955), and Luigi Nono’s il canto sospeso (1955). These works are analyzed in detail within my research, and I found every example to have a natural feel to them even if its use of the FS is carefully planned out by the composer. Bartók’s works are the least precise of my examples but perhaps the most natural ones. This imprecision in composition may be considered a more natural use of the FS in music, since nature is not always perfect either. However, in works such as Stockhausen’s, the structure is meticulously formatted in such that the precision is masked by a cycle as to appear more natural.

The conclusion of my research was a commissioned work for my instrument, the viola. I provided my research to composer Jacob Miller Smith, a DMA Music Composition student at ASU, and together we built the framework for the piece he wrote for me. We utilized the life cycle of the Black-Eyed Susan, a flower that uses the FS in its number of petals. The life cycle of a flower is in seven parts, so the piece was written to have seven separate sections in a palindrome within an overall ABA’ format. To utilize the FS, Smith used Fibonacci number durations for rests between notes, note/gesture groupings, and a mapping of 12358 as the set (01247). I worked with Smith during the process to make sure that the piece was technically suitable for my capabilities and the instrument, and I premiered the work in my defense.

The Fibonacci Series and Golden Mean in music provides a natural feel to the music it is present in, even if it is carefully planned out by the composer. More work is still to be done to develop the FS’s use in music, but the examples presented in this project lay down a framework for it to take a natural place in music composition.
ContributorsFerry, Courtney (Author) / Knowles, Kristina (Thesis director) / Buck, Nancy (Committee member) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132082-Thumbnail Image.png
Description
Van der Waerden’s Theorem asserts that for any two positive integers k and r, one may find an integer w=w(k,r) known as the Van der Waerden Number such that for every r-coloring of the integers from 1 to w there exists a monochromatic arithmetic progression of length k. This groundbreaking

Van der Waerden’s Theorem asserts that for any two positive integers k and r, one may find an integer w=w(k,r) known as the Van der Waerden Number such that for every r-coloring of the integers from 1 to w there exists a monochromatic arithmetic progression of length k. This groundbreaking theorem in combinatorics has greatly impacted the field of discrete math for decades. However, it is quite difficult to find the exact values of w. As such, it would be worth more of our time to try and bound such a value, both from below and above, in order to restrict the possible values of the Van der Waerden Numbers. In this thesis we will endeavor to bound such a number; in addition to proving Van der Waerden’s Theorem, we will discuss the unique functions that bound the Van der Waerden Numbers.
Created2019-12
132089-Thumbnail Image.png
Description
The Morris-Lecar two-dimensional conductance-based model for an excitable membrane can be used to simulate neurons, and these neuron models can be connected to model neuronal networks. In this work, we analyze the dynamics of the Morris-Lecar model using phase plane analysis, and we simulate the model with different parameter regimes.

The Morris-Lecar two-dimensional conductance-based model for an excitable membrane can be used to simulate neurons, and these neuron models can be connected to model neuronal networks. In this work, we analyze the dynamics of the Morris-Lecar model using phase plane analysis, and we simulate the model with different parameter regimes. We also develop and simulate a two-cell model network, as well as larger networks composed of 17 cells. We show that the bifurcation type and the parameters for the synaptic connections between model neurons affect the model network dynamic behavior. In particular, we look at the synchronization of networks of identical, repetitively firing neurons.
ContributorsSchlichting, Nicolas Jordan (Author) / Crook, Dr. Sharon (Thesis director) / Baer, Dr. Steven (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132093-Thumbnail Image.png
Description
The integration of behavioral health services into primary care in a rapidly evolving innovation that has shown potential to improve access to care, health outcomes, and lower health costs. In an effort to reform healthcare system, integrating behavioral health services become a vital part of the patient-centered medical home (PCMH).

The integration of behavioral health services into primary care in a rapidly evolving innovation that has shown potential to improve access to care, health outcomes, and lower health costs. In an effort to reform healthcare system, integrating behavioral health services become a vital part of the patient-centered medical home (PCMH). As research and developments in integration continue to evolve, there is a need to identify consistencies, discrepancies, and gaps in the field to inform the best ways to move forward. This study is a systematic review seeking to identify trends, gaps, and future directions of research in integrated behavioral health in primary care. Using Google Scholar 171 papers were included, 95 being original research and 76 being reviews, commentary, and editorials. From the results, it is clear that the case for integration has been made, and now it is time to move to the specifics. Both empirical and theoretical evidence supports the benefits of integration to patients and health systems. However, there is a lack of literature that tackles problems that hinder or facilitate integration in independent clinics with unique characteristics. Most notably, specific interventions that are effective and appropriate in primary care, payment reforms that are feasible and sustainable, and the effect of integration on health disparities.
ContributorsDye- Robinson, Amy (Author) / Kessler, Rodger (Thesis director) / McEntee, Mindy (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
Today, there is a gap between the effectiveness of learning online and learning in person. Online educational videos such as ones found on Youtube mimic more of a lecture style of learning, which is easy ignore without a teacher nearby to engage the viewer. Furthermore, there is a lack of

Today, there is a gap between the effectiveness of learning online and learning in person. Online educational videos such as ones found on Youtube mimic more of a lecture style of learning, which is easy ignore without a teacher nearby to engage the viewer. Furthermore, there is a lack of educational videos on the topic of Euclid’s Elements geometry proofs. This project remedies both accounts by offering a new approach on interactive online learning videos and exercises for the topic of Euclid’s Elements Book One, Propositions One and Two. This is accomplished by combining interactive videos, exercises, questions, and sketchpads into one online worksheet. The interactive videos are made using traditional methods of audio and visual elements, with an emphasis on having more dynamic visuals to engage with the viewer. The exercises are made using a program called Geogebra, and consist in having a question to solve, and diagram the use can manipulate to help solve the question. The questions consist in ensuring the viewer understands the material, as well as potential questions to gauge general understanding before and after using the worksheet. The sketchpads consist in stating the proposition being proved, and giving the user all the tools they need to construct or prove the Euclidean proposition in the online interactive environment offered by Geogebra. All of these components are then ordered into the worksheet to make an interactive online learning experience for the viewer. This way the viewer may both watch and actively use the material being presented to promote learning through engagement in a teacher-less environment.
ContributorsFischer, Quinn (Co-author, Co-author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12