Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth abundant materials;

With the rise of global warming and the growing energy crisis, scientists have pivoted from typical resources to look for new materials and technologies that can aid in advancing renewable energy efforts. Perovskite materials hold the potential for making high-efficiency, low-cost solar cells through solution processing of Earth abundant materials; however, scalability and manufacturability remain a challenge. In order to transition from small scale processing in inert environments via spin coating to higher throughput processing in ambient conditions via blade coating, the fundamentals of perovskite crystallization must be understood. Classical nucleation theory, the LaMer relation, and nonclassical crystallization considerations are discussed to provide a mechanism by which gellan gum, a nontoxic biopolymer from the food industry, has enabled quality halide perovskite thin films. Specifically, this research aims to study the effects of gellan gum in improving perovskite manufacturability by controlling crystallization through indirect alteration of evaporation and supersaturation rates by modifying fluid dynamics and the free energy associated with nucleation and growth. Simply, gellan gum controls crystallization to enable the fabrication of promising scalable PVSK devices in open air.

ContributorsCartledge, Carsen (Author) / Rolston, Nicholas (Thesis director) / Yu, Zhengshan (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Art (Contributor)
Created2023-05
Description
Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge limiting the commercialization potential of these films is their fragility

Perovskite films are the future of solar cell technology as they are not only low cost to produce and lightweight but also have a 26% conversion efficiency. This is extremely close to the standard silicon solar cell. The key challenge limiting the commercialization potential of these films is their fragility and durability to outdoors conditions. This project investigates the mechanical and material properties of these perovskite materials in order to understand their future manufacturing capabilities. Through the use of a spin coater, blade coater, and a double cantilever beam testing set up, the fracture energy (or toughness), Gc, of Perovskite films is determined. Understanding the properties of these films can help manufacturers determine how to best make durable films that can be used in everyday energy generation. Furthermore, this study offers strategies to improve the fracture energy of these films by adding polymers and food-additive starches to the recipe. The findings collected in this project present a technique to study the mechanical properties of perovskite-based solar technology and films and further aid the technology to become commercially viable.
ContributorsBakshi, Kayshavi (Author) / Rolston, Nicholas (Thesis director) / Li, Muzhi (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-12
Description

Understanding perovskite degradation and stress responses under practical conditions is necessary to design efficient and stable photovoltaic devices. This experiment creates an in-situ stress testing system, in which the stress of a sample may be tested while it is subjected to conditions that it may experience in operation, such as

Understanding perovskite degradation and stress responses under practical conditions is necessary to design efficient and stable photovoltaic devices. This experiment creates an in-situ stress testing system, in which the stress of a sample may be tested while it is subjected to conditions that it may experience in operation, such as cycles of sunlight. This immediate stress response is valuable in understanding what factors directly contribute to the stresses that degrade perovskite solar cells. Perovskite may be 2D or 3D and are composed of many different elements and additives. Each ink responds differently to sunlight exposure due to their different structures, which is important to characterize and comprehend. Preliminary testing and characterization for 2D, 3D and MAPI with gellan gum additive perovskite inks is conducted in this experiment. It is reported that the lattice expansion causing degradation-inducing stress is due to photon dosage rather than heat, and both 3D and 2D perovskites are sensitive to minute photon dosage.

ContributorsBurgard, Erin (Author) / Rolston, Nicholas (Thesis director) / Yu, Zhengshan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Department of English (Contributor)
Created2023-05