Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134021-Thumbnail Image.png
Description
The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make u

The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make up this gut community. Despite years of study on this termite species, little was known about the spatial organization of the protist community within Zootermopsis nevadensis nuttingi. To resolve this issue, a study was conducted in which the distribution of protist genera among gut segments was observed and elucidated. This was done by separating hindgut segments, then counting the protists using a hemocytometer at a magnification of 200x. 60 segments from 20 termites were examined, and the total number of protists counted was 69,560. Images were also taken using a scanning electron microscope. Statistically significant, distinct distribution patterns were found for Trichonympha, Trichomitopsis and Streblomastix, while the small genera of Hexamastix and Tricercomitus appeared to have no special distribution. Trichomitopsis was more abundant in the posterior hindgut, Streblomastix was more abundant anteriorly, while the distribution of Trichonympha varied by colony. Hexamastix and Tricercomitus make up a large majority of the protists observed in any segment, followed by Streblomastix, Trichomitopsis and Trichonympha. Understanding the distribution of different protists within the hindgut may improve our understanding of the ecological relationships among protists as well as their individual roles in lignocellulose digestion, contributing to a better understanding of the hindgut system as a whole.
ContributorsPiarowski, Christina Marie (Author) / Gile, Gillian (Thesis director) / DeMartini, Francesca (Committee member) / Taerum, Stephen (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131300-Thumbnail Image.png
Description
The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have revealed the widespread occurrence of intragenomic (intra-individual) polymorphism in many protists, an understudied phenomenon which contradicts the assumed homogeneity of the 18S throughout an individual genome. This thesis quantifies and analyzes the level of intragenomic and intraspecific 18S sequence variability in three Trichonympha species (T. campanula, T. collaris, T. postcylindrica) from Zootermopsis termites. Single-cell DNA extractions, PCR, cloning, and sequencing were performed to obtain 18S rRNA sequence reads, which were then analyzed to determine levels of sequence divergence among individuals and among species. Intragenomic variability was encountered in all three species. However, excluding singleton mutations, sequence divergence was less than 1% in 53 of the 56 compared individuals. T. collaris exhibited the most substantial intragenomic variability, with sequence divergence ranging from 0 to 3.4%. Further studies with more clones per cell are needed to elucidate the true extent of intragenomic variability in Trichonympha.
ContributorsBobbett, Bradley (Author) / Gile, Gillian (Thesis director) / Liebig, Juergen (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05