Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 41 - 50 of 185
Filtering by

Clear all filters

134335-Thumbnail Image.png
Description
This study aims to teach the reader about the process of making a building more energy efficient at ASU. In this study the importance of energy efficiency in buildings will be discussed as well as how building efficiency is important for the three tiers of sustainability. The case of energy

This study aims to teach the reader about the process of making a building more energy efficient at ASU. In this study the importance of energy efficiency in buildings will be discussed as well as how building efficiency is important for the three tiers of sustainability. The case of energy efficiency in the environment, economy, and society will be outlined with the intent of creating urgency for the implementation of energy efficiency. Environment, economy, and society, the three tiers of sustainability fit the model of energy efficiency because efficient energy is a principle of sustainability. Efficient energy can fill the gap between our energy system at present and the energy system of the future. This document outlines the steps that ASU goes through when there is an energy upgrade to a building on campus. It also includes a mock audit of the Psychology North building at ASU. This mock audit serves as an example to justify how the steps outlined in this document can be used to initiate an energy retrofit. A person who reads this document will be able to understand the energy retrofit process. The main argument is that there is room for student inclusion in this process, by giving students the knowledge on how to initiate an energy retrofit they have the tools to be included. Practicing building efficiency on campus will help ASU to succeed in accomplishing numbers two and four of their sustainability goals: "1) Carbon Neutrality, 2) Zero Solid/Water Waste, 3) Active Engagement, and 4) Principled Practice" (ASU, 2011).
ContributorsCladianos, Bradley Pete (Author) / Kelman, Jonathan (Thesis director) / Richter, Jennifer (Committee member) / School of Sustainability (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given

X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given annually to researchers, such high-resolution images are presently impossible to attain. Here, we consider two potential solutions to the single-particle hit rate problem; the first looks at applying static electric fields to existing aerodynamic particle injectors, and the second looks at the viability of using time-varying electric fields associated with ion traps to create high-density regions of particles. For the static solution, we looked at applying a constant electric potential to the nozzle, as well as applying a high voltage to a ring electrode in close proximity to a grounded nozzle. We considered the breakdown field strength of the helium gas used to determine how closely the ring electrode could be placed without creating an arc that could potentially destroy expensive equipment. Then, we considered the possibility of using electrodynamic ion traps to increase particle densities. We first characterized how charged particles behave in oscillating electric fields using a simple electrode geometry. Using the general results from this, we then constructed a rudimentary ion trap to test if our experiment agreed with the theory. Finally, we conducted a literature review to determine what particle densities other scientists have been able to measure using ion traps. We then compared existing ion traps to what we expect from the nozzle injectors to determine which method may be the better solution.
ContributorsBradshaw, Layne Nicholas (Author) / Kirian, Richard (Thesis director) / Weierstall, Uwe (Committee member) / Department of Physics (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Due to recent changes in climate, hurricanes have become more violent and destructive in the tropical region of the Caribbean. Extreme weather events have destroyed freshwater sources in many islands, affecting the overall food and water security of the region. More resilient forms of collecting freshwater for citizens and agriculture

Due to recent changes in climate, hurricanes have become more violent and destructive in the tropical region of the Caribbean. Extreme weather events have destroyed freshwater sources in many islands, affecting the overall food and water security of the region. More resilient forms of collecting freshwater for citizens and agriculture must be proposed in order to mitigate future weather impacts and increase future water security. Rainwater harvesting is an ideal and sustainable source of freshwater that can be adapted into existing households to help ease reliance on city water sources. Rainwater harvesting systems are effective sources of supplemental freshwater because they are easy to incorporate and inexpensive compared to other sources of freshwater. Dennis McClung, founder and owner of global charity, Garden Pool, has created the Climate Smart Farm, an agriculture system that incorporates rainwater harvesting to help create a more climate resilient farm. The Climate Smart Farm is adaptable and can be customized to incorporate solar energy, vertical gardening, aquaponics, hydroponics, plant propagation techniques, and more to grow crops in a more sustainable fashion. The system has recently been installed in the island of Barbuda, which was badly affected by the hurricanes in the summer of 2017. The system has been positively accepted by the country due to its ability to make agriculture simple and sustainable. It can be built with local materials, making the building process economy friendly. And with the addition of plant propagation techniques, the Climate Smart Farm can extend growing seasons and increase overall yields.
ContributorsLeung, Karyn Mae (Author) / Eakin, Hallie (Thesis director) / McClung, Dennis (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper analyzes different rhetorics as expressed through a six-month period of qualitative research. Using the methodology of Participatory Critical Rhetoric, I conducted fieldwork while participating in advocacy programs as a volunteer at a church. Conducting interviews, taking photographs and writing field notes, I collected data studying the rhetoric expressed

This paper analyzes different rhetorics as expressed through a six-month period of qualitative research. Using the methodology of Participatory Critical Rhetoric, I conducted fieldwork while participating in advocacy programs as a volunteer at a church. Conducting interviews, taking photographs and writing field notes, I collected data studying the rhetoric expressed in situ. As a participant in the organization during the time of my fieldwork, I captured overt and covert rhetoric expressed from members, staff and outsiders of the organization. I noticed particular rhetoric expressed, specifically righteousness, inclusivity, social justice, and the Gospel. In my introduction, I discuss the broader context of our contentious American political state, which increases the relevancy of this project. I provide a small overview of the foundations for the methodology used to collect data and conduct research. Within the analysis portion, I dive into the rhetoric I analyzed in my time within the organization, providing specific examples of how these rhetoric play out in day-to-day discourses and activities of the organization. In my final thoughts section, I provide some reflexivity on the youth and future of the organization. I also explore what I learned from my participation and how inclusivity affected me as a participant in the organization.
Created2017-12
133782-Thumbnail Image.png
Description
As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in

As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in the development of water sustainability programs by performing experiments that convert urine into reusable water. The goal is to make reusable water processes become inexpensive and easily accessible to local businesses. This promises a significant environmental impact. In order to make the process of development more efficient we can combine engineering technology with scientific experimentation. As an engineering student and an advocate of water sustainability, I have a chance to design the front-end platform that will use IoT to make the experimental process more accessible and effective. In this paper, I will document the entire process involved in the designing process and what I have learned.
ContributorsTran, Phung Thien (Author) / Boscovic, Dragan (Thesis director) / Boyer, Treavor (Committee member) / School of Earth and Space Exploration (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132980-Thumbnail Image.png
Description
Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the milk to ensure its proper digestion (Segurel & Bon, 2017). Generally, humans lose the expression of lactase after weaning, which prevents them being able to breakdown lactose from dairy (Flatz, 1987).
My research is focused on the people of Turkana, a human pastoral population inhabiting Northwest Kenya. The people of Turkana are Nilotic people that are native to the Turkana district. There are currently no conclusive studies done on evidence for genetic lactase persistence in Turkana. Therefore, my research will be on the evolution of lactase persistence in the people of Turkana. The goal of this project is to investigate the evolutionary history of two genes with known involvement in lactase persistence, LCT and MCM6, in the Turkana. Variants in these genes have previously been identified to result in the ability to digest lactose post-weaning age. Furthermore, an additional study found that a closely related population to the Turkana, the Massai, showed stronger signals of recent selection for lactase persistence than Europeans in these genes. My goal is to characterize known variants associated with lactase persistence by calculating their allele frequencies in the Turkana and conduct selection scans to determine if LCT/MCM6 show signatures of positive selection. In doing this, we conducted a pilot study consisting of 10 female Turkana individuals and 10 females from four different populations from the 1000 genomes project namely: the Yoruba in Ibadan, Nigeria (YRI); Luhya in Webuye, Kenya; Utah Residents with Northern and Western European Ancestry (CEU); and the Southern Han Chinese. The allele frequency calculation suggested that the CEU (Utah Residents with Northern and Western European Ancestry) population had a higher lactase persistence associated allele frequency than all the other populations analyzed here, including the Turkana population. Our Tajima’s D calculations and analysis suggested that both the Turkana population and the four haplotype map populations shows signatures of positive selection in the same region. The iHS selection scans we conducted to detect signatures of positive selection on all five populations showed that the Southern Han Chinese (CHS), the LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations had stronger signatures of positive selection than the Turkana population. The LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations showed the strongest signatures of positive selection in this region. This project serves as a first step in the investigation of lactase persistence in the Turkana population and its evolution over time.
ContributorsJobe, Ndey Bassin (Author) / Wilson Sayres, Melissa (Thesis director) / Paaijmans, Krijn (Committee member) / Taravella, Angela (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134928-Thumbnail Image.png
Description
Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all

Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all life requires water, it is in our best interest to explore Europa. This thesis explored the plausibility of life on Europa in four of its environments: on the surface, under the ice shell, in the liquid subsurface, and at the bottom of the liquid subsurface. Each of these environments were defined from science literature and compared to known Earth analogs. Europa's surface is not likely to support life, as there is not liquid water present. There is also extremely high radiation bombardment and extremely low surface temperatures that are estimated to be well out of the range for supporting life. It is more plausible that life could be under Europa's ice shell than on the surface. Under the surface, radiation exposure dramatically reduces. Researchers have found organisms on Earth that can live in similar environments as Europa's ice as well. These organisms require some interaction with liquid water though. Uncertainties about Europa's ice shell thickness and radiation load per depth it experiences, as well as there being limited research on organisms in ice environments, hinder us from definitively assessing the plausibility of life under the surface. The best environment on Europa to look for life on Europa is the subsurface. There remain a lot of uncertainties about the subsurface, however, that make it difficult to assess the plausibility of finding life. These uncertainties include its depth, water activity, salinity, temperature, pressure, and structure. This subsurface may be suitable for life, but until we can further understand the environment of the subsurface, we cannot make definite conclusions. As for assessing the plausibility of life at the bottom of Europa's subsurface, there is not much we know about this environment either. It has been suggested there may be hydrothermal vents, but no evidence has either supported or rejected this idea. Without a clear understanding of the environment at the bottom of the subsurface, the plausibility of life here cannot be definitively answered. It is apparent we need to further study Europa. In particular, we need to focus on understanding the subsurface. When the subsurface is better defined, we can better assess the plausibility of life being present. Fortunately, both NASA and the ESA are currently planning missions to Europa that are scheduled to launch in the 2020s.
ContributorsHoward, Cheyenne Whiffen (Author) / Farmer, Jack (Thesis director) / Shock, Everett (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Aboriginal Voices Testimonials Reflecting Indigenous Experience in Australia "Aboriginal Voices: Testimonials Reflecting Indigenous Experience in Australia," is a collection of four audio portraits of Aboriginal artists interviewed between January and May of 2016. It enabled me to cover an underserved population, consistent with journalistic and human rights standards. The testimonials

Aboriginal Voices Testimonials Reflecting Indigenous Experience in Australia "Aboriginal Voices: Testimonials Reflecting Indigenous Experience in Australia," is a collection of four audio portraits of Aboriginal artists interviewed between January and May of 2016. It enabled me to cover an underserved population, consistent with journalistic and human rights standards. The testimonials are paired with visuals, such as portraits and graphics. The artists who participated each discussed different aspects of life, although key and overlapping themes surfaced with each. Nicole Phillips, a highly educated animator and teacher, discussed systemic poverty and the generational trauma of mistreatment. She emphasizes, however, that Aboriginal Australians are still fighting back. Gordon Syron talks about his family's land and how it was taken from them. Syron killed the man responsible and spent time in prison, where he began his art career. He focuses on justice issues and fair representation. Peta-Joy Williams is fair-skinned and brings up issues of inclusion and identity. Additionally, Williams is fluent in Pitjara, one of 120 remaining Aboriginal languages. She teaches this to youth and Elders, passing on and restoring culture. Finally, Jeffrey Samuels reveals his experience in a boys home and getting fostered by a white family. He was denied his culture and worked very hard at a young age. Samuels is part of the Stolen Generation, a large population of Aboriginal Australians taken from their families as part of government policies. The paper discusses outreach techniques, summarizes the interview experience with each artists, technical requirements and reflections on the subjects that came up most prominently. The website, serving as the visual element of the project, can be found at aboriginalvoices.wordpress.com
Created2016-12
134812-Thumbnail Image.png
Description
An important part of the layout of a city is the nature of formally defined open spaces that give people a designated forum for interaction, help them navigate the stress of a dense population, and impact how common people perceive each other and their authority and how they move through

An important part of the layout of a city is the nature of formally defined open spaces that give people a designated forum for interaction, help them navigate the stress of a dense population, and impact how common people perceive each other and their authority and how they move through the built environment. There is a critical lack of understanding of the origin of these spaces in the earliest cities and their social contexts. I will examine a sample of premodern cities, including archaeologically and historically documented examples, to provide more clarity as to why formal open spaces exist, both in ancient cities and modern ones. This project stems from the larger one: "Service Access in Premodern Cities" at ASU, a project dedicated to transdisciplinary research on comparative urbanism. Each of the cities in this projects have been scored on a scale of governance based on that of Blanton and Fargher (2007).I will measure the formal open space in these cities using GIS. Relating plaza area to the size of the city and the form of governance will show whether or not plazas can be classified as a public good according to Blanton and Fargher's classification and whether cross-cultural patterns exist regarding the relationship of governance to public space. A development of this more complex understanding of the dynamics of early cities and their governance is critical to understanding the evolution of both human society and the modern city.
ContributorsNorwood, Alexandra Lynn (Author) / Smith, Michael E. (Thesis director) / Peeples, Matthew (Committee member) / School of Earth and Space Exploration (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135035-Thumbnail Image.png
Description
For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns

For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns over two years (2013-2014) were interviewed prior to the start of their internship, after their internship, and after presenting their research at the American Geophysical Union annual meeting. This internship program is of particular interest because many of the interns come into the REU with non-geoscience or geophysics backgrounds (e.g., physics, mathematics, chemistry, engineering). Both a priori and emergent codes are used to convert interview transcripts into quantitative data, which is analyzed alongside demographic information to understand how the REU influences their decisions. Increases in self-efficacy and exposure to multiple facets of geoscience research are expressed as primary factors that help shape their future educational and career goals. Other factors such as networking opportunities and connections during the REU also can play a role in their decision. Overall, REU participants who identified as geosciences majors solidified their decisions to pursue a career in geosciences, while participants who identified as non-geosciences majors were inclined to change majors, pursue geosciences in graduate school, or explore other job opportunities in the geosciences.
ContributorsGossard, Trey Marshall (Author) / Semken, Steven (Thesis director) / Garnero, Edward (Committee member) / Reynolds, Stephen (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12