Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166248-Thumbnail Image.png
Description

The first extrasolar planet discovered orbited the millisecond pulsar PSR B1257+12. These so-called "pulsar planets" have proved to be more uncommon than their early discovery might have suggested. The proximity of many known pulsar planets to their host neutron stars indicates that they formed post-supernova, possibly from material produced in

The first extrasolar planet discovered orbited the millisecond pulsar PSR B1257+12. These so-called "pulsar planets" have proved to be more uncommon than their early discovery might have suggested. The proximity of many known pulsar planets to their host neutron stars indicates that they formed post-supernova, possibly from material produced in the supernova. Any pre-existing planets that close would have been obliterated in the supernova. Material from the supernova falls back to an accretion disk around the neutron star analogous to a protoplanetary disk around a protostar. The composition of the supernova thus determines the composition of the planet-forming material. The pulsar planet then forms from collisions between particles within the disk. This research examines the composition of supernova remnants to explore this formation process. Chemical abundances of supernova ejecta were obtained from 3D supernova simulations. The velocities of particles containing silicate-mineral forming elements were filtered to determine what might stay in the system and thus be available for the formation of a fallback disk. The abundances of the remaining particles were compared to characterize the potential composition of such a fallback disk. Overall, the composition was roughly silicate-like, but the rates of mixing versus dust formation could lead to the production of highly exotic minerals.

ContributorsCranmer, Catherine (Author) / Young, Patrick (Thesis director) / Desch, Steven (Committee member) / Patience, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
164923-Thumbnail Image.png
Description
Study of the early Universe is filled with many unknowns, one of which is the nature of the very first generation of stars, otherwise designated as "Population III stars". The early Universe was composed almost entirely of cold hydrogen and helium, with only trace amounts of any heavier elements. As

Study of the early Universe is filled with many unknowns, one of which is the nature of the very first generation of stars, otherwise designated as "Population III stars". The early Universe was composed almost entirely of cold hydrogen and helium, with only trace amounts of any heavier elements. As such, these stars would have compositions very different from the stars we are able to observe today, which would in turn change how these stars functioned, as well as their lifespans. Population III stars are so old that the light they emitted has not yet reached us here on Earth. Yet we know they have to have existed, so how do we go about studying objects that we have not yet observed? And more importantly, is there a metallicity threshold at which stars begin to behave like the stars we observe today? These areas are where stellar modelling programs such as TYCHO8 and the Spanish Virtual Observatory's Theoretical Spectra Web Server (TSWS) come in. These programs allow astronomers to model the physics of Pop III stars. We can get a pretty good understanding of how these stars behaved, how long they lived, and the visual spectra they would have emitted. Such information is crucial to astronomers being able to search for remnants of these stars, and one day, the stars themselves.
ContributorsMena, Julian (Author) / Young, Patrick (Thesis director) / Bowman, Judd (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05