Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

134159-Thumbnail Image.png
DescriptionThis project is designed to generate enthusiasm for science among refugee students in hopes of inspiring them to continue learning science as well as to help them with their current understanding of their school science subject matter.
ContributorsSipes, Shannon Paige (Author) / O'Flaherty, Katherine (Thesis director) / Gregg, George (Committee member) / School of Molecular Sciences (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133803-Thumbnail Image.png
Description
Zoraida Ladrón de Guevarra was born in 1936 in Coyula, Mexico, a small village in the state of Oaxaca. Her father’s passing required Zoraida to find a job at age fourteen to support her family. Her story, a 200-page memoir entitled “After Papa Died,” follows Zoraida’s time as a servant

Zoraida Ladrón de Guevarra was born in 1936 in Coyula, Mexico, a small village in the state of Oaxaca. Her father’s passing required Zoraida to find a job at age fourteen to support her family. Her story, a 200-page memoir entitled “After Papa Died,” follows Zoraida’s time as a servant and eventual nanny in Veracruz. Flashing back to memories of her hometown and the people living in it, the story ends before she enters America first as a visitor in 1954, and later on a working Visa in 1957—the first woman in her village to leave to the United States. Hers is a story relevant today, evident with the paradoxes explored between poverty and riches, patriarchy and matriarchy, freedom and captivity. Assimilation impacts the reading of this memoir, as Zoraida began writing the memoir in her 80s (around fifty years after gaining American citizenship). This detailed family history is about the nature of memory, community, and in particular, the experience of being an immigrant. This thesis project centers on this text and includes three components: an edited memoir, informational interviews, and an introduction. Beginning as a diary steeped in the tradition of oral history, the memoir required a “translation” into a written form; chapters and chronological continuity helped with organization. Topics of interest from the story, such as identity, domestic violence, and religion, are further explored in a series of interviews with Zoraida. The inclusion of an introduction to the text contextualizes the stories documented in the memoir with supplemental information. The contents of the project are housed on a website: alongwaybabyproject.net.
ContributorsVan Slyke, Shea Elizabeth (Author) / Meloy, Elizabeth (Thesis director) / O'Flaherty, Katherine (Committee member) / Department of Supply Chain Management (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133632-Thumbnail Image.png
Description
Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a

Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a crucial in the formation of stars within the galaxies and also in the overall evolution of galaxies. The clouds could in fact be thought of as mobile "gas stations" whose sole purpose is facilitate the ionization of elements and ultimately supply gas to galaxies. My thesis project is a follow-up study on CGM gas cloud observations that were made by Borthakur et. al. (2016). Using Cosmic Origins Spectrograph (COS) data from the Hubble Space Telescope (HST), Borthakur et. al. (2016) observed the presence of both Carbon IV (C IV) and Oxygen VI (O IV) but did not observe any Nitrogen V (N V) in the gas cloud when expected to be observable. Therefore, the ultimate goal of my research was to determine whether indeed CGM gas clouds have an actual shortage of the N V ion. My research involves the generation of cosmological simulations of a cold gas cloud that has a radius of 98 parsecs, relative velocity of 200 km/s, density range of 10-3 to -5 and a temperature in the range of ~104 to 5 K, and also a hot CGM that has density in the range of 10-4.5 to -6 particles/cm3 and temperature of approximately 106 K. Traces of N v are observed in my simulations.
ContributorsSaboi, Kezman (Author) / Scannapieco, Evan (Thesis director) / Borthakur, Sanchayeeta (Committee member) / Cottle, JNeil (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
"Look Up" is a full length hip hop concept album that follows a day in the life of protagonist Ozy Mandias, except with a science fiction twist. He has been abducted by an alien who is going through his memories. The project includes a full length script and lyric companion

"Look Up" is a full length hip hop concept album that follows a day in the life of protagonist Ozy Mandias, except with a science fiction twist. He has been abducted by an alien who is going through his memories. The project includes a full length script and lyric companion as well as a package mood visuals to go along with the album.
ContributorsDurkin, Jonathan Joseph (Author) / Mantie, Roger (Thesis director) / Norby, Christopher (Committee member) / School of Earth and Space Exploration (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133520-Thumbnail Image.png
Description
State constitutions across the nation grant specific rights to their citizens, and in Arizona, the right to referenda reigns as a key cornerstone of Arizona democracy. However, in the 21st century, no referendum effort has succeeded in acquiring the required signatures to halt a bill, and put it before the

State constitutions across the nation grant specific rights to their citizens, and in Arizona, the right to referenda reigns as a key cornerstone of Arizona democracy. However, in the 21st century, no referendum effort has succeeded in acquiring the required signatures to halt a bill, and put it before the voters. In the summer of 2017, a volunteer led group called Save Our Schools, set a powerful precedent by successfully collecting over 111,540 signatures to halt Senate Bill 1431, the Empowerment Scholarship Account Expansion. While collecting 36,000 more signatures than what was required, they established the possibility for future volunteer led signature efforts. Despite having little financial or political backing, the group struck an important win for direct democracy. They have set the framework for how future groups can successfully petition government without high dollar fundraising. This study will evaluate the tactics, and strategies they used, so that future efforts have a framework.
ContributorsArwood, James William (Author) / Bentley, Margaretha (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133525-Thumbnail Image.png
Description
Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming method of producing the magnitude of delta-v vectors required to abort from various points along a Near Rectilinear Halo Orbit. Although the utility of the study is limited, the accuracy of the delta-v predictions made by a Gaussian regression model is fairly accurate after a relatively swift computation time, paving the way for more concentrated studies of this nature in the future.
ContributorsSmallwood, Sarah Lynn (Author) / Peet, Matthew (Thesis director) / Liu, Huan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133545-Thumbnail Image.png
Description
Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's potential throughout a seemingly infinite number of unique exoplanetary environments.

Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's potential throughout a seemingly infinite number of unique exoplanetary environments. The purpose of this research project is to identify the most plausible biosignature gases that would indicate life's existence in the context of hyperarid exoplanetary atmospheres. This analysis first defines hyperarid environments based on known analogues for Earth and Mars and discusses the methods that researchers use to determine whether or not an exoplanet is hyperarid. It then identifies the most relevant biosignatures to focus on based on the scientific literature on analogous hyperarid environments and ranks them in order from greatest to least biological plausibility within extreme hyperarid conditions. The research found that methane (CH4) and nitrous oxide (N2O) are the most helpful biosignature gases for these particular exoplanetary scenarios based on reviews of the literature. The research also found that oxygen (O2), hydrogen sulfide (H2S) and ammonia (NH3) are the biosignatures with the least likely biological origin and the highest likelihood of false positive detection. This analysis also found that carbon dioxide (CO2) is a useful companion biosignature within these environments when paired with either CH4 or the pairing of hydrogen (H2) and carbon monoxide (CO). This information will provide a useful road map for dealing with the detection of biosignatures within hyperarid exoplanetary atmospheres during future astrobiology research missions.
ContributorsBrown, Kyle William (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Finn, Damien (Committee member) / Hartnett, Hilairy (Committee member) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133462-Thumbnail Image.png
Description
Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently the most precise way to quantify the presence of dark matter in galaxies. In addition, strong gravitational lensing allows astronomers

Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently the most precise way to quantify the presence of dark matter in galaxies. In addition, strong gravitational lensing allows astronomers to observe directly the light from the background source, as it will be both magnified in brightness and easier to resolve. Current computer models can essentially "remove" the foreground galaxy/galaxies to isolate and reconstruct an image of the background source with a resolution greater than that observed without lensing. Both the measurement of dark matter within galaxies and the direct observation of lensed galaxies are goals for this project. This was done using LENSTOOL, a software package chosen for the project, and originally designed to perform such calculations efficiently. While neither goal was met in its entirety, this paper reflects the results of this project throughout the course of the past year.
ContributorsCompanik, Connor Matthew (Author) / Scowen, Paul (Thesis director) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133040-Thumbnail Image.jpg
Description

This research was conducted through the form of interview with Belizean citizens in Belize, Central America where I invited three of Belize’s most pivotal and influential figures behind social and civil injustices. Belize is a Caribbean country in Central America that was once a colony of the British known as

This research was conducted through the form of interview with Belizean citizens in Belize, Central America where I invited three of Belize’s most pivotal and influential figures behind social and civil injustices. Belize is a Caribbean country in Central America that was once a colony of the British known as “British Honduras”, gaining its independence on the 21st of September, 1981, making Belize the third to last youngest Caribbean country.

This has been made into a documentary that started filming back in September of 2017 during Belize’s 36th Independence Day where the country indulges in a month full of celebrations that brings a great feeling of togetherness for everyone. The film company that shot and edited this project is a local Belizean company by the name of KnightandDay Photography, with the consideration of helping to create work in Belize, support local business, and to be fully immersed in Belize and all of its resources.

This documentary is structured into five components: (1) Introduction; (2) Interview with guest number one; (3) Interview with guest number two; (4) Interview with guest number three; (5) Interview with five randomly selected Belizean citizens on the street; (6) Outro.

The main objective of this research was to speak in depth with specific Belizeans that have spent significant time in America, whether working, or going to school in order to have the knowledge to compare the experience of the black Belizean in their home country versus that of what America offers as far as the black experience and to explain the history of other ethnic groups of peoples that inhabits Belize and how the tensions and stereotypes among Belizeans arose over time.

ContributorsVaccarro, TKeyJah (Author) / Hinds, David (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133491-Thumbnail Image.png
Description
Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the satellite's Attitude Determination and Control System, or ADCS, must be properly tested and calibrated on the ground to ensure that it performs to its requirements. A commercial ADCS unit, the MAI-400, has been selected for this mission. The expected environmental disturbances must be characterized and modeled in order to inform planning the operations of this system. Appropriate control gains must also be selected to ensure the optimal satellite response. These gains are derived through a system model in Simulink and its response optimization tool, and these gains are then tested in a supplier provided Dynamic Simulator.
ContributorsWofford, Justin Michael (Author) / Bowman, Judd (Thesis director) / Jacobs, Daniel (Committee member) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05