Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

137278-Thumbnail Image.png
Description
Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs

Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs within and across diverse cultures and comparisons between cultural and scientific models. A cultural consensus analysis was employed to identify a "culturally correct" model for each study site. Next, a scientific model was generated based on current scientific consensus regarding climate change- disease connections. Using the Quadratic Assignment Procedure (QAP), we determined the amount of correlation shared between the scientific model and each cultural model. The analysis revealed a high level of intercorrelation between the models of English speaking, economically developed sites such as Phoenix, Arizona. Additionally, cultural models from the non-English speaking sites were highly intercorrelated with one another. Overall, the English speaking sites tended to have more complex models with a greater density of causal links. Cultural models from the English speaking sites also demonstrated high levels of correlation with the scientific model. In comparison, the cultural models from the non-English speaking sites exhibited little correlation with the scientific model. Based on these findings, we suggest that cultural beliefs related to climate change-related disease causation may be influenced by complex local factors. For example, differences in education and media influences along with localized differences in climate change impacts may, in part, contribute to divergences between the cultural models.
Created2014-05
137106-Thumbnail Image.png
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
136912-Thumbnail Image.png
Description
Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.
ContributorsBlumm, Margaret Elizabeth (Author) / Groppi, Christopher (Thesis director) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
137072-Thumbnail Image.png
Description
Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is injected into the subsurface for disposal. This brine causes a

Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is injected into the subsurface for disposal. This brine causes a pore pressure gradient that is commonly believed to trigger failure along critically stressed subsurface faults. In Timpson, a small city in eastern Texas, earthquakes have become much more common since two injection wells were installed in 2007. 16 events of M_W > 2 have been detected since 2008 and are believed to be associated with failure along a subsurface fault. Applying interferometric synthetic aperture radar, we analyzed 3 sets of SAR images from the Advanced Land Observing Satellite (ALOS) from May 2007 to December 2010. Using these data sets, XX interferograms were generated. From these interferograms, it was possible to determine the spatial and temporal evolution of the crustal deformation in the line-of-sight of the satellite. The results show strong evidence of uplift in the region adjacent to the injection wells. While previous studies have established a strong connection between fluid injection and increased seismicity, this is to our knowledge the first observed case of crustal deformation that has been observed as a result of hydraulic fracturing fluid disposal.
Created2014-05
Description
Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from baked zones can completely reset if subjected to temperatures high

Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from baked zones can completely reset if subjected to temperatures high enough and long enough for bulk diffusive loss. Presented here is the reproducibility of initial attempts to date flows by examining the (U-Th)/He geochronology of grains within baked zones. We examine grains from two localities within the San Francisco Volcanic Field and the Mormon Volcanic Field in northern Arizona. Thirteen zircon and apatite grains yielded from locality 2 collected from the uppermost 10 cm beneath a 7m flow of a basalt yield an apparent age of 4.39 ± 0.28 Ma (2σ), which is within range of published Middle Pliocene ages. Twenty-nine grains from locality 1 collected from the uppermost 20 cm beneath a 2 to 5m flow yield dates ranging from 0.47 ± 0.02 Ma to 892.77 ± 27.02 Ma, indicating the grains were partially reset or not reset at all. The degree to which grains are reset depends on a variety of factors detailed in this study. With these factors accounted for however, our study confirms application of this indirect dating technique is a useful tool for dating basaltic flows.
ContributorsCronk, Stephanie Sarah (Author) / Hodges, Kip (Thesis director) / van Soest, Matthijs (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05