Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
147913-Thumbnail Image.png
Description

This study investigated how mindset intervention in freshman engineering courses influenced students’ implicit intelligence and self-efficacy beliefs. An intervention which bolsters students’ beliefs that they possess the cognitive tools to perform well in their classes can be the deciding factor in their decision to continue in their engineering major. Treatment

This study investigated how mindset intervention in freshman engineering courses influenced students’ implicit intelligence and self-efficacy beliefs. An intervention which bolsters students’ beliefs that they possess the cognitive tools to perform well in their classes can be the deciding factor in their decision to continue in their engineering major. Treatment was administered across four sections of an introductory engineering course where two professors taught two sections. Across three survey points, one course of each professor received the intervention while the other remained neutral, but the second time point switched this condition, so all students received intervention. Robust efficacy and mindset scales quantitatively measured the strength of their beliefs in their abilities, general and engineering, and if they believed they could change their intelligence and abilities. Repeated measures ANOVA and linear regressions revealed that students who embody a growth mindset tended to have stronger and higher self-efficacy beliefs. With the introduction of intervention, the relationship between mindset and self-efficacy grew stronger and more positive over time.

ContributorsFulginiti, Alexander Ellis (Author) / Middleton, James (Thesis director) / Grewal, Anoop (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133102-Thumbnail Image.png
Description
Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014).

Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014). MIR research techniques have been applied within the field of music and emotions research to help analyze the correlative properties between the music information and the emotional output. By pairing methods within music and emotions research with the analysis of the musical features extracted through MIR, researchers have developed predictive models for emotions within a musical piece. This research has increased our understanding of the correlative properties of certain musical features like pitch, timbre, rhythm, dynamics, mel frequency cepstral coefficients (MFCC's), and others, to the emotions evoked by music (Lartillot 2008; Schedl 2014) This understanding of the correlative properties has enabled researchers to generate predictive models of emotion within music based on listeners' emotional response to it. However, robust models that account for a user's individualized emotional experience and the semantic nuances of emotional categorization have eluded the research community (London, 2001). To address these two main issues, more advanced analytical methods have been employed. In this article we will look at two of these more advanced analytical methods, machine learning algorithms and deep learning techniques, and discuss the effect that they have had on music and emotions research (Murthy, 2018). Current trends within MIR research, the application of support vector machines and neural networks, will also be assessed to explain how these methods help to address the two main issues within music and emotion research. Finally, future research within the field of machine and deep learning will be postulated to show how individuate models may be developed from a user or a pool of user's listening libraries. Also how developments of semi-supervised classification models that assess categorization by cluster instead of by nominal data, may be helpful in addressing the nuances of emotional categorization.
ContributorsMcgeehon, Timothy Makoto (Author) / Middleton, James (Thesis director) / Knowles, Kristina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134070-Thumbnail Image.png
Description
This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013).

This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013). The advantage of this study over others is due to this data set, which was designed to be a representative sample of the national population of US high school students. Effects of motivational factors were considered in the context of demographic groups, with the analysis conducted on PSEM declaration illuminating a problem in the discrepancy between male and female high school students. In general, however, PSEM retention from intention to declaration is abysmal, with only 35% of those students who intended towards PSEM actually enrolling.
ContributorsMangu, Daniel Matei (Author) / Middleton, James (Thesis director) / Ganesh, Tirupalavanam (Committee member) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134375-Thumbnail Image.png
Description
To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.
ContributorsRoss, Zachary David (Author) / Middleton, James (Thesis director) / Steele, Bruce (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135186-Thumbnail Image.png
Description
This paper explores the consequences of cleaning rescue ropes with common disinfectants and cleansers in order to assess their usability in cleaning ropes contaminated with blood borne pathogens. Using a modified version of an industry-standard testing procedure and in-depth statistical analysis, it characterizes the effect each chemical has on the

This paper explores the consequences of cleaning rescue ropes with common disinfectants and cleansers in order to assess their usability in cleaning ropes contaminated with blood borne pathogens. Using a modified version of an industry-standard testing procedure and in-depth statistical analysis, it characterizes the effect each chemical has on the mechanical properties of the rope. The experiment measured the strength and elastic properties of rope core fibers soaked in different chemicals and at different concentration levels. The data show that certain common solutions for cleaning equipment are, in fact, damaging to the equipment and thus dangerous to the users. Even products marketed for climbing ropes were found to be potentially hazardous. The results also demonstrate a curious phenomenon occurring within the washing process that causes a shift in the elastic properties of the fibers, prompting additional research. Further work is needed to expand the breadth and depth of these results and to make effective recommendations to the rope industry and rescue professionals regarding rope care and maintenance.
ContributorsDenike, Andrew Nicholas (Author) / Middleton, James (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

This study investigates whether an experience as a novice can help alleviate expert blindness in Arizona State University faculty. Expert blindness, also known as the expert blind spot, is a phenomenon in which an expert in any subject finds it difficult to teach because they are so advanced at it.

This study investigates whether an experience as a novice can help alleviate expert blindness in Arizona State University faculty. Expert blindness, also known as the expert blind spot, is a phenomenon in which an expert in any subject finds it difficult to teach because they are so advanced at it. Many faculty have taught the same subject for so long that certain things that are difficult for beginners in their courses are trivial for the expert. In this experiment, ASU faculty were given five weeks of instruction to learn to solve the Rubik’s Cube in five minutes or less. Before and after the five-week experience, the participants took the Interpersonal Reactivity Index assessment, which measures empathy. Throughout the Rubik’s Cube challenge, the faculty were also asked discussion questions and invited to participate in informal interviews. The study finds a significant increase in the “empathic concern” of the participants after the experience, with a sample size of five participants. The qualitative interview data confirms the survey data, and the main sentiments of the professors after going through the experience were distilled into four main themes: (a) patience and reflection; (b) individualized approaches; (c) trying, failing, and improving; (d) knowing what and when to explain. An effective teacher who is aware of their tendency towards expert blindness should be aware of these four themes and strive to include them in their own teaching. The study recommends that universities and companies should have “beginner experiences” at regular intervals to remind experts what it is like to be a beginner again. These experiences not only mitigate the expert blind spot but promote lifelong learning and an active brain.

ContributorsLarson, Paul (Author) / Middleton, James (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05