Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

132448-Thumbnail Image.png
Description
The solid municipal waste contains approximately 60% of organic matter and after varying temperature, pressure and residence time as factors, the temperature influenced the yield at least twice more than the residence time. The pressure had the least effect on the production of the syngas. Different types of hydrogen separation

The solid municipal waste contains approximately 60% of organic matter and after varying temperature, pressure and residence time as factors, the temperature influenced the yield at least twice more than the residence time. The pressure had the least effect on the production of the syngas. Different types of hydrogen separation were explored ranging from pressure swing adsorption (PSA) to water splitting, factional/cryogenic method and then hydrogen selective membranes. The membranes were found to be more cost efficient, and easily accessible and fabricated and produced purer hydrogen gas. The different membranes were explored, and their different characteristics were explored, and a decision matrix showed that the polymeric membrane was 1.37 time better than microporous membrane and 1.54 times better than dense metal membrane.
ContributorsAgbo, Benjamin Udama (Co-author) / Buyinza, Allan (Co-author) / Deng, Shuaguang (Thesis director) / Taylor, David (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132902-Thumbnail Image.png
Description
Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle

Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle to flow as it pertains to particulate processes and product design. This research is important in multiple industries such as pharmaceuticals and food processes.
ContributorsNugent, Emily Rose (Author) / Emady, Heather (Thesis director) / Marvi, Hamidreza (Committee member) / Materials Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132906-Thumbnail Image.png
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass,

Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
ContributorsWong, Cindy (Author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132977-Thumbnail Image.png
Description
In order to produce efficient reverse osmosis membranes, it is necessary to minimize the effects of outside factors on the membrane surface that can reduce the flux of water through the membrane. One such problem is fouling. Fouling happens when particles are deposited on the membrane surface, blocking water flow

In order to produce efficient reverse osmosis membranes, it is necessary to minimize the effects of outside factors on the membrane surface that can reduce the flux of water through the membrane. One such problem is fouling. Fouling happens when particles are deposited on the membrane surface, blocking water flow through the membrane. Over time, the collection of foulants will prevent water through the membrane, increasing the amount of energy required in the system. Microgel, a heat-responsive colloidal gel, shows promise as an anti-foulant coating as it possesses functional groups similar to the membrane and compatible with common foulants and changes volume due to temperature differences. By coating the membrane with the microgel, foulants will attach to the functional groups of the microgel instead of those of the membrane Our hypothesis is that the change in volume of the microgel with different temperatures will help reduce and remove foulants. By functionalizing the surface of the membrane and the microgel, the microgel can covalently bond to the membrane surface and avoid detachment under reverse osmosis conditions. Microgel-coated reverse osmosis membranes have been fluorescently fouled to measure the decrease in foulants with heated crossflow under fluorescent microscopy. This process has shown a 50% decrease in fluorescence on the surface of the membrane indicating a decrease in foulants due to the presence of microgel. Under cross-flow conditions with a low flow rate, the microgel remains on the functionalized membrane for 8 hours with similar anti-fouling performance as the dip-coating process.
ContributorsKraetz, Andrea Nicole (Author) / Thomas, Marylaura (Thesis director) / Perreault, Francois (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132870-Thumbnail Image.png
Description
The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate as the casted HTPB grains. However, with 3D printing, the

The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate as the casted HTPB grains. However, with 3D printing, the core of these grains can be printed to maximize surface area in contact with the oxidizer. The goal of this research is to print hybrid rocket fuel grains with various core geometries and test them on a small-scale hybrid test stand. While the hot fires are still under testing at the time of this abstract, the manufacturing posed an interesting outcome, being more time intensive than expected, contradicting the initial hypothesis of faster manufacturing. Future endeavors will continue research into the cores of the 3D printed grains, possible multi-material made grains and creating core structures for HTPB grains from 3D printed materials.
ContributorsRust, Daniel William Yun Jin (Author) / Rajadas, John (Thesis director) / Taconi, Carolyn (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133064-Thumbnail Image.png
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the

Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132272-Thumbnail Image.png
Description
The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior

The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior materials
system to reinforce Kevlar armor for the Norica Capstone project, this thesis set out to
synthesize, recover, and characterize zinc oxide nanowire colloids.

The materials synthesized were successfully utilized in the wider Capstone effort to
dramatically enhance the protective abilities of Kevlar, while the data obtained on the 14
hydrothermal synthesis attempts and numerous challenges at recovery provided critical
information on the synthesis parameters involved in the reliable, scalable mass production of the
nanomaterial additive. Additionally, recovery was unconventionally facilitated in the absence of
a vacuum filtration apparatus with nanoscale filters by intentionally inducing electrostatic
agglomeration of the nanowires during standard gravity filtration. The subsequent application of
these nanowires constituted a pioneering use in the production of nanowire-reinforced
STF-based Kevlar coatings, and support the future development and, ultimately, the
commercialization of lighter and more-protective soft armor systems.
ContributorsDurso, Michael Nathan (Author) / Tongay, Sefaattin (Thesis director) / Zhuang, Houlong (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132791-Thumbnail Image.png
Description
When, in 1958, Disney aired a program titled “Magic Highway USA” featuring autonomous vehicles directed by punch-cards, few would have predicted touchscreen reprogrammable devices. None could have foreseen a battery powered car capable of fully autonomous operation and a zero to sixty mph acceleration in 1.9 seconds. The 21st century

When, in 1958, Disney aired a program titled “Magic Highway USA” featuring autonomous vehicles directed by punch-cards, few would have predicted touchscreen reprogrammable devices. None could have foreseen a battery powered car capable of fully autonomous operation and a zero to sixty mph acceleration in 1.9 seconds. The 21st century has proven to be one of exponential technological advancement and stunning innovation, with few case studies more obvious than that of the progression of autonomous vehicle (AV) technology. Advances in transportation technology and robotics have, throughout history, pointed to the eventual development of fully autonomous vehicles; however, it is only within the last 10 years that innovation has met determination to leapfrog AV development to its current state. As this technology has developed, society has begun to realize its extensive social implications, both positive and negative, from extending mobility to the impaired to reducing the need to fill jobs in the transportation industry. With progress comes new challenges and as planners strive to get ahead of the pace of AV innovation, it is becoming increasingly apparent that questions of data security, privacy, regulation, and liability must be quickly addressed. Some also question the economic feasibility of AV and suggest that, unless new economic models are developed around the transportation industry, there is a significant risk of increased societal strain as a result of digital and economic inequality. As a consequence, industry, academia, and policy have all emerged to direct, manage, and govern this new and exciting space. Autonomous vehicles promise to move the world into a new era of almost limitless potential but only if society, industry, and policy are capable of moving with it.
ContributorsGalvin, Sarah Nicole (Author) / Krause, Stephen (Thesis director) / Anwar, Shahriar (Committee member) / School of Politics and Global Studies (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132603-Thumbnail Image.png
Description
In June of 2016, the United Kingdom held a referendum for its citizens to decide whether to remain a part of the European Union or take their leave. The vote was close but ultimately the U.K. decided to leave, triggering the two-year process of negotiations that would shape the U.K.’s

In June of 2016, the United Kingdom held a referendum for its citizens to decide whether to remain a part of the European Union or take their leave. The vote was close but ultimately the U.K. decided to leave, triggering the two-year process of negotiations that would shape the U.K.’s departure (Brexit). The question of what will become of the border between Northern Ireland and the Republic of Ireland is heavy with implications for the national identity of people living on either side of the border, and this makes it one of the more pressing concerns in Brexit discourse. This research analyzes how national identity is used as a rhetorical tactic in media to influence and persuade readers to vote in accordance with the author’s political goals. It does so by evaluating how borders shape national identity and analyzing newspaper articles from the two highest circulating Northern Irish daily newspapers (The Irish News and the Belfast Telegraph) during the week leading up to the June 23rd, 2016 referendum. In analyzing news articles relating to the Irish border issue of Brexit from The Irish News and the Belfast Telegraph during the time frame of June 16th-23rd, 2016, four analytical categories of how identity-related rhetoric was used were discovered: fear, self-interest, Irish Nationalism, and a negative association of the past. Further, it was hypothesized and confirmed the political leanings of the papers influenced which type of rhetorical tactic was used. In the broad realm of Brexit and media related discussion, this research could help strengthen understanding of how traditional media uses national identity to persuade readers to and influence voting behavior in the midst of such a divisive referendum.

Key Words: Brexit, Irish border, national identity, rhetoric, newspapers
ContributorsCaldwell, Tara (Author) / O'Flaherty, Katherine (Thesis director) / Ripley, Charles (Committee member) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05