Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 19
Filtering by

Clear all filters

136226-Thumbnail Image.png
Description
Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that

Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that diets with no meat consumption (pesco-vegetarian and lacto-vegetarian) would reduce protein glycation, in comparison to a diet with meat. Forty six healthy adult omnivorous subjects were randomized into one of three groups and instructed to either consume red meat (i.e. meat) or poultry twice per day (control), eliminate meat and increase fish consumption (pesco-vegetarian), or adopt a vegetarian diet devoid of fish, meat or poultry (lacto-vegetarian) for four weeks. Fasting plasma samples were collected from participants at baseline and after 4 weeks of the dietary intervention. Plasma glucose concentrations were measured using a commercially available kit. Percent glycated albumin was measured on a separate aliquot of plasma by mass spectrometry. Plasma glucose concentrations were significantly increased following 4-weeks of pesco-vegetarian diet (P=0.002, paired t-test). Neither the lacto-vegetarian (P=0.898) or the control diet (P=0.233) affected plasma glucose concentrations. Despite the significant increase in plasma glucose following a pesco-vegetarian diet, no change in percent glycated albumin was observed (P>0.50, ANOVA). These findings may indicate a protective effect of the pesco-vegetarian diet on protein glycation in the presence of elevated plasma glucose and suggest the need for additional studies to examine the link between increased fish consumption and glucose regulation.
ContributorsRaad, Noor (Author) / Sweazea, Karen (Thesis director, Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133166-Thumbnail Image.png
Description
With the rising prevalence of obesity and diabetes, novel treatments to help mitigate or prevent symptoms of these conditions are warranted. Prior studies have shown that fossilized plant materials found in soil lowers blood sugar in a mouse model of diabetes. The goal of this study is to determine whether

With the rising prevalence of obesity and diabetes, novel treatments to help mitigate or prevent symptoms of these conditions are warranted. Prior studies have shown that fossilized plant materials found in soil lowers blood sugar in a mouse model of diabetes. The goal of this study is to determine whether a similar organometallic complex (OMC) could prevent insulin resistance in the skeletal muscle brought on by chronic high fat intake by examining the protein expression of key enzymes in the insulin signaling pathway and examining glucoregulatory measures. Six-week-old periadolescent male Sprague-Dawley rats (n=42) were randomly chosen to be fed either a high fat diet (HFD) (20% protein, 20% carbohydrates [6.8% sucrose], 60% fat) or a standard chow diet (18.9% protein, 57.33% carbohydrates, 5% fat) for 10 weeks. Rats from each diet group were then randomly assigned to one of three doses of OMC (0, 0.6, 3.0 mg/mL), which was added to their drinking water and fasting blood glucose was measured at baseline and again at 10 weeks. After 10 weeks, rats were euthanized, and soleus muscle samples were isolated, snap-frozen, and stored at -80°C until analyses. Fasting plasma glucose was measured using a commercially available glucose oxidase kit. Following 6 and 10 weeks, HFD rats developed significant hyperglycemia (p<0.001 and p=0.025) compared to chow controls which was prevented by high dose OMC (p=0.021). After 10 weeks, there were significant differences in fasting serum insulin between diets (p=0.009) where levels were higher in HFD rats. No significant difference was seen in p-PI3K expression between groups. These results suggest that OMC could prevent insulin resistance by reducing hyperglycemia. Further studies are needed to characterize the effects of diet and OMC on the insulin signaling pathway in skeletal muscle, the main site of postprandial glucose disposal. This study was supported by a grant from Isagenix International LLC as well as funds from Barrett, the Honors College at Arizona State University, Tempe Campus.
ContributorsStarr, Ashlee (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Hyatt, JP (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133801-Thumbnail Image.png
Description
The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on bird populations. As changes in distribution and nutrition are thought to be related to the gut microbiome, the goal of

The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on bird populations. As changes in distribution and nutrition are thought to be related to the gut microbiome, the goal of this study was to determine the relationship between nutritional markers, including body mass, gizzard mass, triglycerides, free glycerol and glycogen, and the gut microbiome in urban and rural house sparrows (Passer domesticus), to understand physiological differences between urban and rural house sparrows. We hypothesized that increased access to human refuse, through urbanization, may significantly alter the gut microbiome and thus, the nutritional physiology-the effects of foods on metabolism-of urban birds. Fecal samples were collected from rural (n=13) and urban (n=7) birds to characterize the gut microbiome and plasma samples were collected to measure nutritional markers using commercially available kits. Following euthanasia, liver samples were collected to measure triglycerides, free glycerol and glycogen. While there were no significant differences in circulating triglycerides or free glycerol between populations, urban birds had significantly greater blood glucose (p=0.046) compared to rural birds, when normalized to body mass. Additionally, rural birds had significantly more plasma uric acid (p=0.016) and liver free glycerol (p=0.044). Higher blood glucose suggests greater accessibility to carbohydrates in an urban setting or higher rates of gluconeogenesis. Uric acid is a byproduct of purine catabolism and a potent antioxidant. Thus, higher uric acid suggests that rural birds may utilize more protein for energy. Finally, higher liver free glycerol in rural birds suggests they metabolize more fat but could also indicate that urban birds have greater glycerol gluconeogenesis, which may consume free glycerol resulting in higher glucose concentrations. However, the current study does not provide evidence for this as there were no significant differences in the gluconeogenic enzyme PEPCK-C levels between urban and rural house sparrows (p= 0.165). While triglyceride, glucose, and uric acid levels differed between urban and rural birds, there were additionally no significant differences in the gut microbiome, indicating that although nutritional physiology can be affected by distribution and varying food availability and sources, differences in the gut microbiome are evident at the phyla level.
ContributorsGadau, Alice (Author) / Sweazea, Karen (Thesis director) / Whisner, Corrie (Committee member) / Crawford, Melisa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137313-Thumbnail Image.png
Description
Morbid obesity is associated with cardiovascular and metabolic disorders. A major contributor to the pathogenesis of these diseases is impaired vasodilation resulting from elevated reactive oxygen species (ROS). This is because certain ROS such as superoxide are raised with obesity and scavenge the endogenous vasorelaxant nitric oxide, resulting in hypertension.

Morbid obesity is associated with cardiovascular and metabolic disorders. A major contributor to the pathogenesis of these diseases is impaired vasodilation resulting from elevated reactive oxygen species (ROS). This is because certain ROS such as superoxide are raised with obesity and scavenge the endogenous vasorelaxant nitric oxide, resulting in hypertension. The objective of this study was to measure the ability of genistein to quench superoxide in the vasculature of ob/ob mice, an animal model of obesity and type 2 diabetes. Genistein is an isoflavonic phytoestrogen naturally found in soy products. While genistein has documented antioxidant and anti-inflammatory properties, it is not known whether this protects the vasculature from oxidative stress. Genistein was hypothesized to reduce superoxide in arteries from female ob/ob mice. The superoxide indicator dihydroethidium (DHE) [2µL/mL HEPES buffer] was added to isolated aortae and mesenteric arteries from mice fed either a control (standard rodent chow containing 200-300 mg genistein/kg) or genistein-enriched (600mg genistein/kg rodent chow) diets for 4 weeks. Frozen tissues sections were collected onto glass microscope slides and examined using confocal microscopy. Contrary to the hypothesis, a diet containing twice the amount of genistein found in standard chow did not significantly reduce superoxide concentrations in aortae (p=0.287) or mesenteric arteries (p=0.352). Superoxide dismutase, an antioxidant enzyme that breaks down superoxide, was significantly upregulated in the genistein-enriched diet group (p=0.004), although this elevation did not promote the breakdown of superoxide. In addition, the inflammatory marker iNOS was not downregulated in the genistein-enriched diet group (p>0.05). The results indicate that high amounts of isoflavones, like genistein, may not exhibit the purported antioxidant effects in the vasculature of obese or diabetic subjects. Further studies examining arteries from ob/ob mice fed a genistein-free diet are needed to elucidate the true effects of genistein on oxidative stress.
ContributorsSimperova, Anna Marie (Co-author) / Al-Nakkash, Layla (Co-author) / Ricklefs, Kristin (Co-author) / Faust, James J. (Co-author) / Sweazea, Karen L. (Co-author) / Sweazea, Karen (Thesis director) / Gonzales, Rayna (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05
134744-Thumbnail Image.png
Description
It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of

It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of low-fat to high-fat diet. Exogenous norepinephrine (NE) injections (dose of 0.25 mg/kg i.p.) were administered in order to elicit a temperature response, where increases in temperature indicate increased activity. Temperatures were measured via temperature sensing transponders that had been inserted at the following three sites: interscapular BAT (iBAT), the abdomen (core), and lower back (reference). Data showed increased BAT activity during acute (2-3 weeks) high fat diet (HFD) in comparison to low fat diet (LFD), but a moderate to marked decrease in BAT activity during chronic HFD (6-8 weeks) when compared to acute HFD. This suggests that while a HFD may initially stimulate BAT in the short-term, a long-term HFD diet may have negative effects on BAT activation.
ContributorsSivak, Hanna (Author) / Sweazea, Karen (Thesis director) / Herman, Richard (Committee member) / Caplan, Michael (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133129-Thumbnail Image.png
Description
Vascular inflammation is a key component for cerebrovascular disease and ischemic injury is suggested to be a significant contributor, resulting in either myocardial ischemia or stroke. A strong inflammatory response is characterized by the release of inflammatory cytokines, thus producing and/or activating pro-inflammatory proteins in the cell. Our previous studies

Vascular inflammation is a key component for cerebrovascular disease and ischemic injury is suggested to be a significant contributor, resulting in either myocardial ischemia or stroke. A strong inflammatory response is characterized by the release of inflammatory cytokines, thus producing and/or activating pro-inflammatory proteins in the cell. Our previous studies have demonstrated that hypoxia plus glucose deprivation (HGD), an in vitro model of ischemia, increases the proinflammatory mediator, cyclooxygenase-2 levels (COX-2), in vascular tissues. Nuclear factor kappa B (NF-κB) activation is an upstream transcription factor of COX-2 and had been suggested to be involved in “sterile” inflammation in experimental stroke models. Mechanisms underlying the development and progression of inflammation in the cerebrovasculature following ischemic injury in human tissue has not been addressed. Thus, the purpose of this study was to examine the impact of HGD on NF-κB expression and activation in human brain vascular smooth muscle cells (HBVSMC). In addition, we assessed pro-inflammatory mediator levels of downstream NF-κB transcription products, COX-2 and iNOS, and level of its upstream receptor, TLR4. Primary HBVSMC at passage 7 were treated with normoxia (room air) or HGD (1% O2). Following exposure to HGD (3h), cells were isolated, homogenized, and total protein content determined. Lysates, either whole cell or nuclear and cytosolic fractions, were prepped for western blot and analysis. Anti-α-smooth muscle actin was used to verify HBVSMC origin and -actin was used as a loading control. NF-κBp65, phosphorylated NF-κBp65, COX-2, and TLR4 protein levels were all measured post HGD. NF-κBp65 total protein was expressed in HBVSMC and a trend for an increase in levels following HGD was observed. Indirect activation of pNF-kBp65 was assessed via nuclear fractionation studies and was increased following HGD. Lamin AC was used to verify nuclear fractionation. Additional findings suggested that HBVSMC expressed TLR4 however, total protein levels of TLR4 were not altered by HGD. COX-2 and iNOS protein levels were also increased following HGD. In conclusion, these studies indicate that HGD alters proinflammatory enzyme levels, potentially by altering NF-κBp65 activation in human vascular smooth muscle cells. Funding Support: University of Arizona Sarver Heart Center and University of Arizona Valley Research Project Grant VRP P1 (RG).
ContributorsRahman, Sanna (Author) / Sweazea, Karen (Thesis director) / Gonzales, Rayna (Committee member) / Li, Yu-Jing (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135088-Thumbnail Image.png
Description
The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is thus hypothesized to counteract oxidative stress when initiated prior to DOX administration. Adult 8-week old, ovariectomized female Sprague-Dawley rats were divided into 4 groups: sedentary + vehicle (Sed+Veh); Sed+DOX; exercise + veh (Ex+Veh); and Ex+DOX. Rats in the exercise groups were preconditioned with high intensity interval training consisting of 4x4 minute bouts of exercise at 85-95% of VO2peak separated by 2 minutes of active recovery performed 5 days per week. Exercise was implemented one week prior to the first injection and continued throughout the study. Animals received either DOX (4mg/kg) or veh (saline) intraperitoneal injections bi-weekly for a cumulative dose of 12 mg/kg per animal. Five days following the final injection, animals were anesthetized with isoflurane, decapitated and aortas and perivascular adipose tissue (PVAT) were removed for western blot analyses. No significant differences in aortic protein expression were detected for inducible nitric oxide synthase (iNOS) or the upstream activator of endothelial nitric oxide synthase (eNOS), Akt, across groups (p>0.05), whereas eNOS protein expression was significantly downregulated in Sed+DOX (p=0.003). In contrast, eNOS expression was not altered in Ex+DOX treated animals. Protein expression of iNOS in PVAT was upregulated with exercise in the DOX-treated groups (p=0.039). These findings suggest that exercise preconditioning may help mitigate vascular effects of DOX by preventing downregulation of eNOS in the aorta.
ContributorsO'Neill, Liam Martin (Author) / Sweazea, Karen (Thesis director) / Angadi, Siddhartha (Committee member) / Dickinson, Jared (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134205-Thumbnail Image.png
Description
Vascular inflammation plays a key role in the development and progression of cardiovascular disease. High fat diet has been associated with cardiovascular risk (1). Therefore, as poor nutrition and poor diet become more widespread, the number of people at risk to cardiovascular disease increases. We hypothesized that using the cancer

Vascular inflammation plays a key role in the development and progression of cardiovascular disease. High fat diet has been associated with cardiovascular risk (1). Therefore, as poor nutrition and poor diet become more widespread, the number of people at risk to cardiovascular disease increases. We hypothesized that using the cancer drug lenalidomide would reverse the inflammation caused by high fat conditions. Human aortic vascular smooth muscle cells were used as an in vitro model to analyze the effect of lenalidomide on high fat diet induced inflammation. Palmitate, a saturated fatty acid was used to induce inflammation. Since lenalidomide has been shown to inhibit cytokine production and attenuate oxidative stress, we investigated whether lenalidomide alters select markers of vascular inflammation in vascular smooth muscle treated with high fat exposure using palmitate. These markers were cyclooxygenase-2 (COX-2) protein levels, TNF-α pro-inflammatory cytokine levels, and superoxide ions. Lenalidomide (5 µM) reversed COX-2 protein expression in cells exposed to high fat conditions (100 µM palmitate). In conclusion, high fat exposure elicits an inflammatory response in cultured primary human vascular smooth muscle, but this response appears to be independent of local cytokine or ROS production. Lenalidomide, although effective at reversing palmitate-induced COX-2, alone augments the pro-inflammatory mediators, COX-2 and TNF-α as well as promotes oxidative stress independent of high fat exposure in human vascular smooth muscle cells.
ContributorsBartel, Robyn Katherine (Author) / Sweazea, Karen (Thesis director) / DeCourt, Boris (Committee member) / Gonzales, Rayna (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05