Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136077-Thumbnail Image.png
Description
Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a

Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a tool for the purification and characterization of these glycoproteins from patient specimens. Materials and Methods: To identify potential Coccidioides-binding lectins, lectin-based immunohistochemistry was performed using a panel of 21 lectins on lung tissue from human patients infected with Coccidioides. Enzyme-Linked Immunosorbent Assays (ELISAs) were used to confirm and test candidate Coccidioides-binding lectins for their ability to bind to proteins from antigen preparations of laboratory-grown Coccidioides. Inhibition IHC and ELISAs were used to confirm binding properties of these lectins. SDS-PAGE and mass spectrometry were performed on eluates from coccidioidal antigen preparations run through lectin-affinity chromatography columns to characterize and identify lectin-binding coccidioidal glycoproteins. Results: Two GlcNAc-binding lectins, GSLII and sWGA, bound specifically to spherules and endospores in infected human lung tissue, and not to adjacent lung tissue. The binding of these lectins to both Coccidioides proteins in lung tissue and to coccidioidal antigen preparations was confirmed to have lectin-like characteristics. SDS-PAGE analysis of eluates from lectin-affinity chromatography demonstrated that GSLII and sWGA bind to coccidioidal glycoproteins. Mass spectrometric identification of the top ten lectin affinity-purified glycoproteins demonstrated that GSLII and sWGA share affinity to a common set of coccidioidal glycoproteins. Conclusion: This is the first report of lectins that bind specifically to Coccidioides spherules and endospores in infected humans. These lectins may have the potential to serve as tools for a better method of detection and diagnosis of Valley Fever.
ContributorsChowdhury, Yasmynn (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Magee, Mitchell (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
134629-Thumbnail Image.png
Description
Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend

Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend to use proteogenomic analysis to reannotate the Coccidioides posadasii str. Silveira genome from protein-level data. Protein samples extracted from both phases of Silveira were fragmented into peptides, sequenced, and compared against databases of known and predicted proteins sequences, as well as a de novo six-frame translation of the genome. 288 unique peptides were located that did not match a known Silveira annotation, and of those 169 were associated with another Coccidioides strain. Additionally, 17 peptides were found at the boundary of, or outside of, the current gene annotation comprising four distinct clusters. For one of these clusters, we were able to calculate a lower bound and an estimate for the size of the gap between two Silveira contigs using the Coccidioides immitis RS transcript associated with that cluster's peptides \u2014 these predictions were consistent with the current annotation's scaffold structure. Three peptides were associated with an actively translated transposon, and a putative active site was located within an intact LTR retrotransposon. We note that gene annotation is necessarily hindered by the quality and level of detail in prior genome sequencing efforts, and recommend that future studies involving reannotation include additional sequencing as well as gene annotation via proteogenomics or other methods.
ContributorsSherrard, Andrew (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Mitchell, Natalie (Committee member) / Computing and Informatics Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
160710-Thumbnail Image.png
Description

In order to determine whether the spatial organization of FRCs and their expression of maturation markers (such as Ltbr) are altered with age, I performed immunofluorescence on frozen and cryosectioned whole lymph nodes from young and aged mice. My second aim was to perform RT-qPCR and flow cytometry in order

In order to determine whether the spatial organization of FRCs and their expression of maturation markers (such as Ltbr) are altered with age, I performed immunofluorescence on frozen and cryosectioned whole lymph nodes from young and aged mice. My second aim was to perform RT-qPCR and flow cytometry in order to determine whether FRCs from aged mice have altered expression of maturation markers when compared to young mice. Thus, the goal of the honors thesis research was to determine whether lymph node FRCs in the aged mouse exhibit signs of impaired maturation in their protein and gene expression. As the immune system is profoundly impacted by aging, my project supports a cellular mechanism by which defects in aged tissues disrupt immune cell function. Therefore, understanding the age-associated decline in host defense could provide new avenues for the treatment of many diseases of which the elderly are most vulnerable, in particular re-emerging and novel pathological agents such as COVID-19.

ContributorsMorris, Karina (Author) / Lake, Douglas (Thesis director) / Lancaster, Jessica (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131931-Thumbnail Image.png
Description
Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%,

Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%, but recently we have identified sensitivity of SCCOHT models to a natural product, triptolide. This study aims to ascertain the mechanism of action of triptolide. Previous SCCOHT epigenetic drug research has shown that some drugs reverse SMARCA2 epigenetic silencing to inhibit tumor growth, therefore it is hypothesized that triptolide acts the same and restores SWI/SNF function. Cells treated with triptolide have no change in SMARCA2 expression, suggesting that re-expression of epigenetically silenced tumor suppressor gene does not underlie its mechanism of action. Growth rates following triptolide treatment were observed in the presence and absence of SMARCA4, but no difference in sensitivity was observed. Thus, it is not likely that triptolide acts by restoring SWI/SNF. Others have observed that triptolide acts on xeroderma pigmentosa type B protein (XPB), a component of super-enhancers, which are DNA regions with high levels of transcription that regulate genes responsible for cell identity and oncogenes driving tumorigenesis. Both SCCOHT-1 and BIN67 cell lines treated with triptolide displayed lower expression of the super-enhancer associated MYC oncogene compared to untreated cells, supporting the theory that triptolide could be inhibiting super-enhancers regulating oncogenes.. A western blot confirmed reduced protein levels of RNA polymerase II and bromodomain 4 (BRD4), two essential components found at high levels at super-enhancers, in BIN67 cells treated with triptolide. ChIP-sequencing of Histone H3 Lysine-27 Acetylation (H3K27ac) marks in BIN67 and SCCOHT-1 cell lines identified super-enhancers in SCCOHT using tools CREAM and ROSE, which were mapped to neighboring genes associated genes and compared with the COSMIC database to identify oncogenes, of which the top 11 were examined by qRT-PCR to ascertain whether triptolide reduces their expression. It has been found that 6 out of 11 of the oncogenes examined (SALL4, MYC, SGK1, HIST1H3B, HMGA2, and CALR) decreased in expression when treated with triptolide. Thus, there is reason to believe that triptolide’s mechanism of action is via inhibition of super-enhancers that regulate oncogene expression.
ContributorsViloria, Nicolle Angela (Author) / Lake, Douglas (Thesis director) / Hendricks, William (Committee member) / Lang, Jessica (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Background: Eosinophilic esophagitis (EoE) is an increasingly prevalent allergic disease characterized by eosinophilic inflammation and symptoms of esophageal dysfunction. Diagnosis and monitoring require repeated, invasive endoscopic esophageal biopsies to assess levels of eosinophilic inflammation. Recently, the minimally invasive esophageal string test (EST) has been used collect protein in mucosal secretions

Background: Eosinophilic esophagitis (EoE) is an increasingly prevalent allergic disease characterized by eosinophilic inflammation and symptoms of esophageal dysfunction. Diagnosis and monitoring require repeated, invasive endoscopic esophageal biopsies to assess levels of eosinophilic inflammation. Recently, the minimally invasive esophageal string test (EST) has been used collect protein in mucosal secretions as a surrogate for tissue biopsies in monitoring disease activity. From the string, assessment of the eosinophil-associated proteins major basic protein-1 (MBP-1) and eotaxin-3 (Eot3) is used to assess disease activity; however, this requires measurement in a reference laboratory, for which the turnaround time for results exceeds the time required for histopathologic assessment of endoscopic biopsies. In addition, MBP-1 and Eot3 are not markers unique to eosinophils. These obstacles can be overcome by targeting eosinophil peroxidase (EPX), an eosinophil-specific protein, using a rapid point-of-care test. Currently, EPX is measured by a labor-intensive enzyme-linked immunosorbent assay (ELISA), but we sought to optimize a rapid point-of-care test to measure EPX in EST segments. Methods: We extracted protein from residual EST segments and measured EPX levels by ELISA and a lateral flow assay (LFA). Results: EPX levels measured by LFA strongly correlated with those quantified by ELISA (rs = 0.90 {95% CI: 0.8283, 0.9466}). The EPX LFA is comparable to ELISA for measuring EPX levels in ESTs. Conclusions: The EPX LFA can provide a way to rapidly test EPX levels in ESTs in clinical settings and may serve as a valuable tool to facilitate diagnosis and monitoring of EoE.
ContributorsDao, Adelyn (Author) / Lake, Douglas (Thesis director) / Borges, Chad (Committee member) / Wright, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2024-05