Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

161205-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high-fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsSayegh, Jonathan (Author) / Garavito, Jorge (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2021-12
161071-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsGaravito, Jorge (Author) / Sayegh, Jonathan (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2021-12
132585-Thumbnail Image.png
Description
In post-industrialized societies, increased consumption of fat-rich diets has been correlated to increasing rates of metabolic disorders, such as Type II Diabetes, which is further linked to insulin resistance. Due to this modern epidemic, it has become exceedingly important to learn more about these disorders with the ultimate goal of

In post-industrialized societies, increased consumption of fat-rich diets has been correlated to increasing rates of metabolic disorders, such as Type II Diabetes, which is further linked to insulin resistance. Due to this modern epidemic, it has become exceedingly important to learn more about these disorders with the ultimate goal of developing more effective treatments. With an overall focus on insulin resistance, the main purposes of this study were to (1) differentiate between two types of insulin resistance and their corresponding measurements and to (2) demonstrate metabolic changes that occur in response to overconsumption of a calorically dense diet. This was accomplished over a 23-week timespan by applying statistical analysis to periodically measured fasting insulin and blood glucose levels in rats fed either a high fat diet or low fat (chow) diet. Body weights were also recorded. The results of this study showed that rats fed a high fat diet experienced fasting hyperinsulinemia, hyperglycemia, and insulin resistance compared to rats fed a chow diet, and that the homeostatic model assessment (HOMA) scale and insulin-stimulated glucose disposal (ISGD) measure different types of insulin resistance. This study was unique in the fact that hepatic insulin resistance and peripheral insulin resistance were differentiated in the same rat.
ContributorsHenry, Lauren Elizabeth (Author) / Herman, Richard (Thesis director) / Baluch, Debra (Committee member) / School of Life Sciences (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132510-Thumbnail Image.png
Description
The prevalence of excessive weight gain (obesity) has steadily increased since about 1980. Excessive weight gain is associated with many comorbidities; thus, a successful treatment is needed. The most common form of non-surgical treatment for excessive weight gain is caloric restriction with the intent to reduce body weight by 10%.

The prevalence of excessive weight gain (obesity) has steadily increased since about 1980. Excessive weight gain is associated with many comorbidities; thus, a successful treatment is needed. The most common form of non-surgical treatment for excessive weight gain is caloric restriction with the intent to reduce body weight by 10%. Though this treatment is successful at reducing body weight, it often fails at maintaining the weight loss. Dietary menthol has been suggested as a possible treatment for excessive weight gain and has produced promising results as a preventative method for excessive weight gain. Our studies aimed at reducing weight regain and maintaining caloric restriction by feeding male Sprague-Dawley rats 0.5% dietary menthol during a period of caloric restriction, aimed at reducing their body weight by 10%, following an experimental period where the rats were fed a high-fat diet (HFD) or low-fat diet (LFD). The effects of the dietary menthol were observed during the weight regain period following the caloric restriction period. Two studies were conducted, and both were unable to achieve a maintenance of weight loss following caloric restriction, although our first study was able to produce a delay in weight regain and did not show any evidence of increased thermogenesis in menthol-treated rats. Our findings differ from the findings of previous studies on dietary menthol which could possibly be due to species effects, differences in procedures, age effects, or effects of different fatty acid compositions. The contrasting results in our studies could be due to genetic differences between litters used or a difference in manufacturing of the menthol diet between studies. Given the partial response to menthol in the first study, it can be suggested that the concentration of 0.5% may be below the threshold of menthol sensitivity for some rats. Future research should focus on increasing the concentration of dietary menthol from 0.5% to 1%, since the current concentration did not yield a reduction in weight regain or maintenance of caloric restriction.
ContributorsRascon, Kasandra (Author) / Herman, Richard (Thesis director) / Sweazea, Karen (Committee member) / Kim, Minjoo (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132740-Thumbnail Image.png
Description
This is a pilot study testing a new indirect calorimeter device. This project was designed to determine the effect of a high fat versus a standard chow diet and age on the energy gap (the difference between energy intake and energy expenditure). Measurements of energy expenditure and oxygen consumption were

This is a pilot study testing a new indirect calorimeter device. This project was designed to determine the effect of a high fat versus a standard chow diet and age on the energy gap (the difference between energy intake and energy expenditure). Measurements of energy expenditure and oxygen consumption were obtained over a 23-hour period from a group of rats fed a high fat diet and a group of rats fed standard chow diet. The experiments were repeated during an experimental phase for 12 weeks, a phase of caloric restriction for 4 weeks, and a phase of weight regain for 4 weeks. We found energy expenditure and oxygen consumption to decrease in the caloric restriction phase and increase with excessive weight gain. Rats fed a high fat diet and obesity prone rats had a wider energy gap than rats fed a standard chow diet and obesity resistant rats. The caloric restriction phase closed the energy gap between energy expenditure and energy intake for all of the rats. The weight regain phase shifted the rats back into positive energy balance so that the energy intake was greater than the energy expenditure. The rats showed greater weight gain in the weight regain phase than in the experimental phase for all groups of rats. The indirect calorimeter device would require further testing to improve the accuracy of the measurements of respiratory quotient and carbon dioxide production before being used in future clinical research applications. The indirect calorimeter device has the potential to record respiratory quotient and carbon dioxide production.
ContributorsMolenaar, Sydney Alexandra (Author) / Herman, Richard (Thesis director) / Towe, Bruce (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05