Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

134021-Thumbnail Image.png
Description
The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make u

The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make up this gut community. Despite years of study on this termite species, little was known about the spatial organization of the protist community within Zootermopsis nevadensis nuttingi. To resolve this issue, a study was conducted in which the distribution of protist genera among gut segments was observed and elucidated. This was done by separating hindgut segments, then counting the protists using a hemocytometer at a magnification of 200x. 60 segments from 20 termites were examined, and the total number of protists counted was 69,560. Images were also taken using a scanning electron microscope. Statistically significant, distinct distribution patterns were found for Trichonympha, Trichomitopsis and Streblomastix, while the small genera of Hexamastix and Tricercomitus appeared to have no special distribution. Trichomitopsis was more abundant in the posterior hindgut, Streblomastix was more abundant anteriorly, while the distribution of Trichonympha varied by colony. Hexamastix and Tricercomitus make up a large majority of the protists observed in any segment, followed by Streblomastix, Trichomitopsis and Trichonympha. Understanding the distribution of different protists within the hindgut may improve our understanding of the ecological relationships among protists as well as their individual roles in lignocellulose digestion, contributing to a better understanding of the hindgut system as a whole.
ContributorsPiarowski, Christina Marie (Author) / Gile, Gillian (Thesis director) / DeMartini, Francesca (Committee member) / Taerum, Stephen (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135295-Thumbnail Image.png
Description
Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental

Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental and clinical spheres of antibiotic use. This data suggests that environmental bacteria, particularly those found in livestock farming ecosystems, may significantly contribute to the overall flow of antibiotic resistance genes into human populations. The main force behind this is the utilization of antibiotics as growth promoters in animal feed supplements, seeding individual animals and their surroundings with low doses of antibiotics. Notable increases in resistance have been observed within areas that utilize these supplements, as well as in connected but unrelated systems. Waste management strategies are poorly implemented, leading to the dispersal of contaminated runoff into groundwater and riverine environments. Furthermore, existing waste processing is limited in efficacy, often releasing large amounts of unprocessed antibiotics as well as a concentrated population of resistant bacteria. Within these resistant populations, horizontal gene transfer has emerged as a vehicle for the distribution of resistance genes into other populations of bacteria. Due to the prevalence of these transfer events, a new role for the environment as a reservoir and incubator of resistance genes is proposed. Current strategies for managing the spread of antibiotic resistance are woefully inadequate, and the continued emergence of new resistance mechanisms due to negligence highlights the need for global, multidisciplinary solutions. To corral the spread of antibiotic resistance, a system is proposed that utilizes metagenomic monitoring and the enforcement of core global policies to slow the advance of resistance while waiting for novel treatment strategies to bear fruit.
ContributorsHrkal, Jacob (Author) / Gile, Gillian (Thesis director) / Shi, Yixin (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas from C. brevis. This study aims to analyze Oxymonas sequences in C. brevis from whole gut genetic material, as well as to dissect its place in phylogenetic trees of Oxymonas and how it fits into specific and evolutionary patterns. To amplify the 18S rRNA gene Oxymonas from C. brevis, the MasterPure DNA extraction kit was used, followed by PCR amplification, followed by agarose gel electrophoresis, followed by purification of the resulting gel bands, followed by ligation/transformation on to an LB agar plate, followed by cloning the resulting bacterial colonies, and topped off by colony screening. The colony screening PCR products were then sequenced in the Genomics Core, assembled in Geneious, aligned and trimmed into a phylogenetic tree, along with several long-read amplicon sequences from Oxymonas in other drywood termites. All whole gut sequences and one amplicon from C. brevis formed a single clade, sharing an ancestor with a sister clade of Oxymonas sp. from C. cavifrons and Procryptotermes leewardensis, but the other long-read fell into its own clade in a different spot on the tree. It can be conjectured that the latter sequence was contaminated and that the C. brevis clones are a monophyletic group, a notion further corroborated by a distantly related clade featuring sequences from Cryptotermes dudleyi, which in turn has a sister taxon of Oxymonas clones from C. cavifrons and P. leewardensis, pointing toward a different kind of co-diversification of the hosts and symbionts rather than cospeciation.

ContributorsSharma, Noah (Author) / Gile, Gillian (Thesis director) / Shaffer, Zachary (Committee member) / Coots, Nicole (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The symbiosis between termites and their parabasalid hindgut protists centers around the wood digestion that is needed for both species to acquire the nutrients from wood. One of the important carbohydrate-active proteins required for the wood breakdown are glycoside hydrolase (GH) families. Previous studies have looked at the phylogeny of

The symbiosis between termites and their parabasalid hindgut protists centers around the wood digestion that is needed for both species to acquire the nutrients from wood. One of the important carbohydrate-active proteins required for the wood breakdown are glycoside hydrolase (GH) families. Previous studies have looked at the phylogeny of some of these protein families from a termite whole gut transcriptome or in a different context than lignocellulose digestion. In this study, we attempt to understand the function and evolution of these GH families in the context of protist evolution by using protist single cell transcriptomes. 14 families of interest were chosen to create phylogenetic trees: GH2, GH3, GH5, GH7, GH8, GH9, GH10, GH11, GH26, GH43, GH45, GH55, GH67, GH95 for their interesting expressions across different protists such as being present in all protists or being present in only termite-associated protists. The dbCAN2 (automated Carbohydrate-active enzyme ANnotation) program was used to find GH families in each of the protist single cell transcriptomes and additional characterized sequences registered on the National Center for Biotechnology Information to create phylogenetic trees for each of the GH families of interest. Results show that many of the GH families expressed in protists were acquired through horizontal gene transfer from fungi and bacteria. Additionally, comparison to the parabasalid phylogeny indicates most GH families evolved independently from the protists. Based on the pattern of expression of these GH families throughout different protist orders, conclusions can be made about whether the specific family was vertically or horizontally acquired in the termite symbionts.

ContributorsJahan, Israa (Author) / Gile, Gillian (Thesis director) / Wang, Xuan (Committee member) / Swichtenberg, Kali (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
166192-Thumbnail Image.png
Description

Nonsense mediated decay is a pathway that selectively degrades mRNAs that contain premature termination codons (PTCs). The purpose of this study is to research the evolution of NMD in Parabasalia and infer whether they have a normal, functioning nonsense-mediated decay pathway. Parabasalia are single-celled, flagellated protists that have undergone evolutionary

Nonsense mediated decay is a pathway that selectively degrades mRNAs that contain premature termination codons (PTCs). The purpose of this study is to research the evolution of NMD in Parabasalia and infer whether they have a normal, functioning nonsense-mediated decay pathway. Parabasalia are single-celled, flagellated protists that have undergone evolutionary transitions as they become obligate symbionts of termites. The key proteins involved in nonsense-mediated decay, ATM, ATR, UPF1, SMG1, UPF2, UPF3A, UPF3B, were researched and used in order to build phylogenetic trees to analyze what other species of eukaryotes have these same genes and where they branch relative to the nonsense mediated decay proteins present in Parabasalia. The main question being asked in this research is if Parabasalia have enough of the main nonsense mediated decay proteins to have a functional nonsense-mediated decay process and if not, which proteins have been lost over evolutionary history. To carry out this research, phylogenic trees were built using transcriptomes from many different types of eukaryotes that contained the main proteins involved in the nonsense-mediated decay pathway. These transcriptomes were taken from the National Center for Biotechnology Information (NCBI) database using the BLAST algorithm, trimmed using TrimAl, aligned by utilizing AliView which utilizes Muscle. Sequoia was then used to remove redundant species from the trees, and IQ-TREE was used to form the phylogenic trees. This process was repeated four times to create well-rounded trees with various eukaryotic species present. The results of this research found that ATM, ATR, UPF1, SMG1, and UPF2 are present in Parabasalia as well as across many eukaryotic groups, whereas UPF3A and UPF3B were not found in many of the eukaryotes researched. This points to Parabasalia having a normal and functioning nonsense-mediated decay pathway as they have the majority of the essential proteins needed for a functional pathway.

ContributorsHammond, Emma (Author) / Gile, Gillian (Thesis director) / DeVecchio, Duane (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
132357-Thumbnail Image.png
Description
Lower termites are classified as termites that require a symbiotic relationship with their hindgut community of single-celled protozoa in order to gather nutrients to survive. The class Spirotrichonymphea is one of the six classes of protists that make up the Phylum Parabasalia. Within the class Spirotrichonymphea, there are 3 families

Lower termites are classified as termites that require a symbiotic relationship with their hindgut community of single-celled protozoa in order to gather nutrients to survive. The class Spirotrichonymphea is one of the six classes of protists that make up the Phylum Parabasalia. Within the class Spirotrichonymphea, there are 3 families and 11 genera. In this study, the Spirotrichonympha, Spironympha, and Microjoenia genera (family Spirotrichonymphidae), Holomastigotes genus (family Holomastigotidae), along with a new genus Brugerollea were targeted for molecular analysis. Protist cells were collected from Reticulitermes tibialis (Rhinotermitidae), Hodotermopsis sjostedti (Archotermopsidae), and Paraneotermes simplicornis (Kalotermidiae). Most molecular phylogenetic studies of termite-associated protists have used the 18S rRNA gene, however, there have been some ambiguities in the phylogeny of this gene. EF1-α, also known as EF1A, is a protein whose sequence can additionally be used to study the evolution of protists. EF1-α gene sequences were obtained from isolated protist cells by reverse transcription PCR (RT-PCR). Additionally, the 18S rRNA gene was amplified to confirm the isolated cells’ identity and compare the two phylogenetic methods, to see which would better resolve phylogenetic ambiguities. Sequences were compiled into an alignment for each target gene, and then a maximum likelihood tree was created for each using RAxML. Results from both trees supports the monophyly of Spirotrichonymphea and the polyphyly of genus Spirotrichonympha. However, neither gene fully resolves the phylogeny of Spirotrichonymphea.
ContributorsNguyen, Keana (Author) / Gile, Gillian (Thesis director) / De Martini, Francesca (Committee member) / Taerum, Stephen Joshua (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131679-Thumbnail Image.png
Description
The objective of this study was to compare the effectiveness of a newly developed DJO Global cervical collar with the previously studied Össur Americas Miami J collar in restricting cervical spine movement and reducing tissue interface pressure. 3D kinematic data were obtained for twelve healthy participants volunteers (6 female, 6

The objective of this study was to compare the effectiveness of a newly developed DJO Global cervical collar with the previously studied Össur Americas Miami J collar in restricting cervical spine movement and reducing tissue interface pressure. 3D kinematic data were obtained for twelve healthy participants volunteers (6 female, 6 male) using a 10 camera infrared motion capture system (Motion Analysis Corp.). Cervical range of motion (CROM) in each plane was calculated as the angle between the head and thorax rigid-body axes. CROM was calculated using custom-written Matlab (MathWorks, Natick, MA) scripts. Tissue interface pressure (TIP) was measured between the head and the collar with three flexible pressure sensor pads over the anterior mandibles and occiput. The distribution of interface pressures was obtained in both the seated and supine positions. Both collars significantly restricted range of motion in all movement directions (p < 0.001) compared to no collar. There were no statistically significant differences in restrictiveness nor tissue interface pressures between the collars. Both collars exhibited similar CROM restriction in all planes and similar interface pressures in both positions. The newly developed DJO collar properly functioned as it markedly restricted spinal movement and produced low contact pressures. The Miami J collar has long been scientifically recognized as an effective collar; however, our data shows that the latest DJO collar was able to exhibit comparable contact pressures and decreases in cervical motion. As manufacturers produce improved collar designs, continued scientific testing should be executed in search of a collar capable of enhanced CROM restriction and the diminution of TIP.
ContributorsAraghi, Kasra (Author) / Gile, Gillian (Thesis director) / McCamley, John (Committee member) / Jacofsky, Marc (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131300-Thumbnail Image.png
Description
The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have revealed the widespread occurrence of intragenomic (intra-individual) polymorphism in many protists, an understudied phenomenon which contradicts the assumed homogeneity of the 18S throughout an individual genome. This thesis quantifies and analyzes the level of intragenomic and intraspecific 18S sequence variability in three Trichonympha species (T. campanula, T. collaris, T. postcylindrica) from Zootermopsis termites. Single-cell DNA extractions, PCR, cloning, and sequencing were performed to obtain 18S rRNA sequence reads, which were then analyzed to determine levels of sequence divergence among individuals and among species. Intragenomic variability was encountered in all three species. However, excluding singleton mutations, sequence divergence was less than 1% in 53 of the 56 compared individuals. T. collaris exhibited the most substantial intragenomic variability, with sequence divergence ranging from 0 to 3.4%. Further studies with more clones per cell are needed to elucidate the true extent of intragenomic variability in Trichonympha.
ContributorsBobbett, Bradley (Author) / Gile, Gillian (Thesis director) / Liebig, Juergen (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164711-Thumbnail Image.png
Description
Trichonympha is a Parabasalian symbiont of lower termites. They are characterized by their spindle-shape, length ranging from 75-150 micrometers, longitudinal flagella, as well as their true rostral tube composed of two plates of parabasal fibers. Ealy analysis through microscopy has revealed that the same species of Trichonympha could be found

Trichonympha is a Parabasalian symbiont of lower termites. They are characterized by their spindle-shape, length ranging from 75-150 micrometers, longitudinal flagella, as well as their true rostral tube composed of two plates of parabasal fibers. Ealy analysis through microscopy has revealed that the same species of Trichonympha could be found across multiple species of termites. However, with recent phylogenetic analysis of the 18S region, it has been found that the species is actually genetically distinct and that Trichonympha have coevolved with their termite hosts. In this study, Trichonympha cells from Reticulitermes tibialis, R. flavipes, and R. lucifugus were isolated. DNA from the single cell samples were purified and amplified through a series of polymerase chain reactions (PCR) and gel electrophoresis. The amplified DNA was extracted from the gel and cloning was performed using competent E. coli. The colonies that formed from each sample were collected and those that amplified after a PCR reaction were sent to the ASU Genomics Core for sanger sequencing. The sequences were assembled, cleaned, and aligned and the maximum likelihood and Bayesian phylogenetic trees were constructed. It was found that there is evidence of multiple species of Trichonympha in R. flavipes and that there were multiple species found in R. lucifugus. However, the Trichonympha sequences from R. lucifugus branch in different clades which indicates that they are more distant species than those of R. flavipes. Additionally, Trichonympha cells from R. tibialis branched in the same clade as those from R. flavipes which provides evidence that the same Trichonympha species can be found in multiples species of Reticulitermes. With these pieces of evidence, we can see multiple patterns of diversity of Trichonympha in their termite hosts.
ContributorsGaylor, Maya (Author) / Gile, Gillian (Thesis director) / De Martini, Francesca (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description
The symbiotic relationship between wood-eating termites and hindgut protists is crucial for termite digestion, with protists aiding in lignocellulose degradation. This relationship, dating back to the late Jurassic, resembles the ancestral association between termites and wood roaches, Cryptocercus, established over 150 million years ago. Paraneotermes simplicicornis and Kalotermes flavicollis, members

The symbiotic relationship between wood-eating termites and hindgut protists is crucial for termite digestion, with protists aiding in lignocellulose degradation. This relationship, dating back to the late Jurassic, resembles the ancestral association between termites and wood roaches, Cryptocercus, established over 150 million years ago. Paraneotermes simplicicornis and Kalotermes flavicollis, members of the Kalotermitidae family, harbor diverse symbiotic communities pivotal for wood digestion and nitrogen fixation. Parabasalians, such as Cristamonadea, exhibit morphological diversity, with some taxa being joeniids, calonymphids, or devescovinids, residing primarily in termite guts. To explore the coevolutionary history and morphological evolution, this study aims to describe devescovinid communities in P. simplicicornis and K. flavicollis using morphological and molecular approaches. Phylogenetic analysis reveals the relationships among Devescovina, Metadevescovina, Macrotrichomonas, and Calonympha. A misidentification of published sequence AB458854 Joenia annectens provides valuable insights into how species are classified, while the discovery of previously unknown symbionts demonstrates the extent of diversity within these ecosystems. Notably, Clade 2 was named Prototermanova, where novel Cristamonadea species were identified, exhibiting genetic and morphological similarities to Devescovina. Similarly, Clade 4 was labelled Trichoterm, where two novel Devescovina species challenged existing taxonomic classifications. DNA sequencing analyses provided additional validation, highlighting the genetic diversity and potential novelty of symbionts within the termite gut. Morphological examination aligns with previously identified genera, and BLAST analysis supports observations of potential novelty in certain symbionts. Protists from P. simplicicornis and K. flavicollis show close relation to Joenia and Devescovina, respectively. This study sheds light on the complexity of termite symbiotic relationships and underscores the need for continued research to fully comprehend protist diversity within termite guts.
ContributorsNukala, Keerthana (Author) / Gile, Gillian (Thesis director) / Vermaas, Willem (Committee member) / Swichtenberg, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Supply Chain Management (Contributor) / School of Life Sciences (Contributor)
Created2024-05