Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

135235-Thumbnail Image.png
Description
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating,

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
ContributorsSuresh Kumar, Reshma (Author) / Chen, Qiang (Thesis director) / Zhang, Peiming (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking

Platelet Rich Plasma (PRP) is an emerging procedure in regenerative medicine that offers a non-surgical minimally invasive way for tissue repair and regeneration. PRP has many different bioactive molecules that are able to influence and help achieve greater recovery and regenerative outcomes. Diet has many effects on platelets and looking at the mechanism in which platelet function and aggregation are affected with different diets shows how they are able to affect PRP therapy. Looking at these mechanisms allows for better physician recommendations for preprocedural diets to optimize efficacy. This paper conducts a systematic review to investigate the influence that diet can have on PRP outcomes. It was shown that high fat diets lower the efficacy of treatment while the Mediterranean diet helps promote platelet function and help efficacy. The future is to look at more diets while also integrating lifestyle choice before treatment for optimal outcomes.

ContributorsLaguna, Sebastian (Author) / Chen, Qiang (Thesis director) / Goyle, Ashu (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05
131741-Thumbnail Image.png
Description
Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I,

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I, III and IV of the ETC. To understand this mechanism, it is necessary to perform a comprehensive analysis of energy metabolism and oxidative phosphorylation (OXPHOS) among impacted patients. Alterations to this gene vary, with the most documented as a single-splice-site mutation (c.626C>T). Here, we discuss MTFMT involvement in mitochondrial protein translation and neurodegenerative disorders, such as Leigh Syndrome and combined OXPHOS deficiency, in two families. We aim to delineate the impact of OXPHOS dysfunction in patients presenting with MTFMT mutation.
ContributorsChain, Kelsey (Author) / Chen, Qiang (Thesis director) / Rangasamy, Sampathkumar (Committee member) / Narayanan, Vinodh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05