Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

136859-Thumbnail Image.png
Description
Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease

Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease the risk of Alzheimer's Disease (Behl & Manthey, 2000), there are many effects of current HTs that are not ideal. Indeed, optimizing conventional HTs has proven complex, indicating a need for alternative therapies. Phytoestrogens are estrogenic compounds found naturally in plants such as soybeans, that could provide new treatment options. Dietary phytoestrogens can benefit memory in the rodent model (Luine, 2006), although the mechanism underlying these effects is unclear. Basal forebrain cholinergic projections have been shown to mediate the cognitive benefits of estrogen (Gibbs, 2010); we hypothesize that phytoestrogens act similarly, via the cholinergic system, to impact memory. We administered varying doses of phytoestrogen-containing diets to ovariectomized female rats, and used the place recognition task to evaluate spatial memory. Brains were then analyzed for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine, in the vertical-diagonal bands (VDB) and the medial septum (MS) of the basal forebrain. Results showed that ChAT cell counts in the VDB were marginally higher with dietary phytoestrogen treatment. Further, VDB ChAT cell counts positively correlated with place recognition performance, indicating that animals with more VDB ChAT neurons exhibited better spatial memory performance. These results suggest that phytoestrogens might act similarly to natural, endogenously circulating estrogens, and identify phytoestrogens as a direction for investigation as a HT.
ContributorsMousa, Abeer Abdul (Author) / Bimonte-Nelson, Heather (Thesis director) / Olive, Foster (Committee member) / Deviche, Pierre (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2014-05
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135025-Thumbnail Image.png
Description
Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when

Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when taken in combination, are beneficial or harmful to cognition. This is a critically important question given that these hormones are most often given in combination versus separately. This thesis is composed of two studies examining the cognitive effects of E2 and Levo using a rat model of surgical menopause. Study 1 assessed how the dose of E2 treatment in rats impacted cognitive performance, and found that low dose E2 enhanced working memory performance. Next, based on the results from Study 1, Study 2 used low dose E2 in combination with different doses of Levo to examine the cognitive effects of several E2 to Levo ratio combinations. The results from Study 2 demonstrated that the combination of low dose E2 with a high dose of Levo at a 1:2 ratio impaired cognition, and that the ratio currently used in HT, 3:1, may also negatively impact cognition. Indeed, there was a dose response effect indicating that working and reference memory performance was incrementally impaired as Levo dose increased. The findings in this thesis suggest that the E2 plus Levo combination is likely not neutral for cognitive function, and prompts further evaluation in menopausal women, as well as drug discovery research to optimize HT using highly controlled preclinical models.
ContributorsBerns-Leone, Claire Elizabeth (Co-author) / Prakapenka, Alesia (Co-author) / Pena, Veronica (Co-author) / Northup-Smith, Steven (Co-author) / Melikian, Ryan (Co-author) / Ladwig, Ducileia (Co-author) / Patel, Shruti (Co-author) / Croft, Corissa (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
131942-Thumbnail Image.png
Description
There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially

There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially lending to the inconclusive treatment results at the clinical level. Recently, the TgF344-AD transgenic rat model has started to be evaluated; however, it has not been well characterized in terms of its cognition, which is fundamental to understanding the trajectory of aging relative to pathology and learning and memory changes. Therefore, the aim of the current study was to identify cognitive outcomes at 6, 9, and 12 months of age in the TgF344-AD rat model. Sixty female transgenic (Tg) and wildtype (WT) rats were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. Results from the asymptotic phase of the water radial arm maze showed that the 6 mo-Tg animals had marginally impaired working memory compared to 6 mo-WT rats, and 12 mo-Tg rats had significantly impaired working memory compared to 12 mo-WT rats. The 9 mo-Tg animals did not demonstrate a significant difference in working memory errors compared to the 9 mo-WT animals. This pattern of impairment, wherein Tg animals made more working memory errors compared to WT animals at the 6 and 12 month time points, but not at the 9 month time point, may be indicative of an inflammatory response that proves helpful at incipient stages of disease progression but eventually leads to further cognitive impairment. These results provide insight into the potential earliest time point that prodromal cognitive symptoms of AD exist, and how they progress with aging. Brain tissue was collected at sacrifice for future analyses of pathology, which will be used to glean insight into the temporal progression of pathological and cognitive outcomes.
ContributorsBulen, Haidyn Leigh (Co-author) / Bulen, Haidyn (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Conrad, Cheryl (Committee member) / Woner, Victoria (Committee member) / Peña, Veronica (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05