Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

137352-Thumbnail Image.png
Description
Climate change is one of the biggest challenges facing today's society.Since the late 19th century, the global average temperature has been rising. In order to minimize the temperature increase of the earth, it is necessary to develop alternative energy technologies that do not depend on fossil fuels. Solar fuels are

Climate change is one of the biggest challenges facing today's society.Since the late 19th century, the global average temperature has been rising. In order to minimize the temperature increase of the earth, it is necessary to develop alternative energy technologies that do not depend on fossil fuels. Solar fuels are one potential energy source for the future. Solar fuel technologies use catalysts to convert low energy molecules into fuels via artificial photosynthesis. TiO2, or titania, is an important model photocatalyst for studying these reactions. It is also important to use remaining fossil fuel resources efficiently and with the lowest possible greenhouse gas emissions. Fuel cells are electrochemical devices that aim to accomplish this goal and CeO2, or ceria, is an important material used in these devices. One way to observe the atomic structure of a material is with a transmission electron microscope (TEM). A traditional transmission electron microscope employs a beam of fast electrons to form atomic resolution images of a material. While imaging gives information about the positions of the atoms in the material, spectroscopy gives information about the composition and bonding of the material. A type of spectroscopy that can be performed inside the transmission electron microscope is electron energy loss spectroscopy (EELS), which provides a fundamental understanding of the electronic structure of a material. The energy loss spectrum also contains information on the chemical bonding in the material, and theoretical calculations that model the spectra are essential to correctly interpreting this bonding information. FEFF is a software that performs EELS calculations. Calculations of the oxygen K edges of TiO2 and CeO2 were made using FEFF in order to understand the changes that occur in the spectrum when oxygen vacancies are introduced as well as the changes near a grain boundary.
ContributorsHussaini, Zahra (Author) / Crozier, Peter (Thesis director) / Rez, Peter (Committee member) / Jorissen, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor) / Department of Physics (Contributor)
Created2013-12
134338-Thumbnail Image.png
Description
A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the

A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the assumption of homogeneity typically used. While more data is needed to complete the model, current progress has identified several details about the system and its ideal modeling approach.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
ContributorsLangdon, Jayse Tanner (Author) / Crozier, Peter (Thesis director) / Hildreth, Owen (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147871-Thumbnail Image.png
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

ContributorsBlock, Claire (Author) / Crozier, Peter (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132562-Thumbnail Image.png
Description
Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of

Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of which the most common are rutile and anatase. We focused on anatase for the purposes of this research, due to its promising results for hydrolysis.

Anatase exists often in its reduced form (TiO2-x), enabling it to perform redox reactions through the absorption and release of oxygen into/from the crystal lattice. These processes result in structural changes, induced by defects in the material, which can theoretically be observed using advanced characterization methods. In situ electron microscopy is one of such methods, and can provide a window into these structural changes. However, in order to interpret the structural evolution caused by defects in materials, it is often necessary and pertinent to use atomistic simulations to compare the experimental images with models.

In this thesis project, we modeled the defect structures in anatase, around oxygen vacancies and at surfaces, using molecular dynamics, benchmarked with density functional theory. Using a “reactive” forcefield designed for the simulation of interactions between anatase and water that can model and treat bonding through the use of bond orders, different vacancy structures were analyzed and simulated. To compare these theoretical, generated models with experimental data, the “multislice approach” to TEM image simulation was used. We investigated a series of different vacancy configurations and surfaces and generated fingerprints for comparison with TEM experiments. This comparison demonstrated a proof of concept for a technique suggesting the possibility for the identification of oxygen vacancy structures directly from TEM images. This research aims to improve our atomic-level understanding of oxide materials, by providing a methodology for the analysis of vacancy formation from very subtle phenomena in TEM images.
ContributorsShindel, Benjamin Noam (Author) / Crozier, Peter (Thesis director) / Anwar, Shahriar (Committee member) / Singh, Arunima (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05