Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134460-Thumbnail Image.png
Description
Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural

Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural stiffness, and very low weight. However, the application of CFRPs and other fiber-matrix composites is complicated due to the manner in which damage propagates throughout the structure, and the associated difficulty in identifying and repairing such damages prior to structural failure. In this paper, a methods of detecting and localizing delaminations withint a complex foam-core composite structure using non-destructive evaluation (NDE) and structural health montoring (SHM) is investigated. The two NDE techniques utilized are flash thermography and low frequency ultrasonic C-Scan, which were used to confirm the location of seeded damages within the specimens and to quantify the size of the damages. Macro fiber composite sensors (MFCs) and piezoelectric sensors (PZTs) were used as actuators and sensors in pitch-catch and pulse-echo configurations in order to study mode conversions and wave reflections of the propagated Lamb waves when interacting with interply delaminations and foam-core separations. The final results indicated that the investigated NDE and SHM techniques are capable of detecting and quantifying damages within complex X-COR composites, with the SHM techniques having the potential to be used \textit{in situ} with a high degree of accuracy. It was also observed that the presence of the X-COR significantly alters the behavior of the wave when compared to a standard CFRP composite plate, making it necessary to account for any variations if wave-base techniques are to be used for damage detection and quantification. Lastly, a time-space model was created to model the wave interactions with damages located within X-COR complex sandwich composites.
Created2017-05
165864-Thumbnail Image.png
Description
This paper focuses on the sample preparation and material characterization of a carbon fiber-reinforced silicon carbonitride (C/SiNC) ceramic matrix composite (CMC) system. C/SiNC CMC systems have desirable mechanical and thermal properties which makes them suitable for a wide variety of applications ranging from aerospace to power generation. CMCs are highly

This paper focuses on the sample preparation and material characterization of a carbon fiber-reinforced silicon carbonitride (C/SiNC) ceramic matrix composite (CMC) system. C/SiNC CMC systems have desirable mechanical and thermal properties which makes them suitable for a wide variety of applications ranging from aerospace to power generation. CMCs are highly susceptible to manufacturing-induced defects, and the effect of these defects on the microscale damage behavior of the microstructure of these CMCs has not been researched. In order to perform the material characterization study, samples of the C/SiNC CMC system had to be prepared through a meticulous polishing process. After the samples were prepared, micrographs of the intratow region of the samples were captured using a confocal microscope. Feature extraction were subsequently performed on the micrographs that were captured. Different image processing techniques were applied to the captured micrographs to quantify the features that were identified.
ContributorsRanade, Rayva (Author) / Chattopadhyay, Aditi (Thesis director) / Khafagy, Khaled (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2022-05