Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 166
Filtering by

Clear all filters

133898-Thumbnail Image.png
Description
The El Niño Southern Oscillation (ENSO) consists of a linkage between changes in sea-surface temperatures and atmospheric pressure across the Tropical Pacific. ENSO encompasses three phases: neutral events, warm/El Niño events in which sea-surface temperatures are warmer-than-normal and the pressure gradient decreases across the Equatorial Pacific, and cold/La Niña events

The El Niño Southern Oscillation (ENSO) consists of a linkage between changes in sea-surface temperatures and atmospheric pressure across the Tropical Pacific. ENSO encompasses three phases: neutral events, warm/El Niño events in which sea-surface temperatures are warmer-than-normal and the pressure gradient decreases across the Equatorial Pacific, and cold/La Niña events in which Tropical Pacific sea-surface temperatures are cooler-than-normal and the pressure gradient increases. Previous studies have determined a connection between variations in ENSO phase and weather patterns across the globe, focusing particularly on surface temperature and precipitation patterns in the United States. However, little research exists that attempts to link changes in ENSO phase with severe weather in Arizona. Therefore, in this study, I analyzed how variations in ENSO phase affect the frequency, intensity, and spatial distribution of four types of severe weather from 1959 to 2016 in Arizona, including a) tornado events, b) severe thunderstorm wind events, c) hail events, and d) heavy rain and flash flood events. I collected data on the Oceanic Niño Index (ONI), a measure of ENSO, as well as storm reports for each severe weather phenomenon dating back to 1959. Then, I analyzed the frequency of each Arizona severe weather event type within each of the twelve annual months and over the entire study period. I also analyzed mean intensity values (Fujita/Enhanced Fujita Scale rating, path width, and path length for tornadoes; hail diameter in millimeters for hail; and wind gust speed for severe thunderstorm wind events) for each severe weather phenomenon, excluding the heavy rain and flash flood events. Finally, I used the Mean Center and Directional Distribution tools in ArcGIS to determine variations in the spatial distribution and mean centers between each ENSO phase for each severe weather event type. I found that ENSO phase, particularly La Niña, does impact the frequency and intensity of tornadoes, hail, thunderstorm wind, and heavy rain/flash flood events in Arizona. However, it appears that ENSO does not affect the spatial distribution of these Arizona severe weather phenomena. These findings attempt to fill in the gap in the literature and could help meteorologists better forecast changes in Arizona severe weather, in turn allowing Arizonans to better prepare for and mitigate the effects of severe weather across the state.
ContributorsGreenwood, Trey Austin (Author) / Cerveny, Randall (Thesis director) / Balling, Robert (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134287-Thumbnail Image.png
Description
Food’s implication on culture and agriculture challenges agriculture’s identity in the age of the city. As architect and author Carolyn Steel explained, “we live in a world shaped by food, and if we realize that, we can use food as a powerful tool — a conceptual tool, design tool, to

Food’s implication on culture and agriculture challenges agriculture’s identity in the age of the city. As architect and author Carolyn Steel explained, “we live in a world shaped by food, and if we realize that, we can use food as a powerful tool — a conceptual tool, design tool, to shape the world differently. It triggers a new way of thinking about the problem, recognizing that food is not a commodity; it is life, it is culture, it’s us. It’s how we evolved.” If the passage of food culture is dependent upon the capacity for learning and transmitting knowledge to succeeding generations, the learning environments should reflect this tenability in its systematic and architectural approach.

Through an investigation of agriculture and cuisine and its consequential influence on culture, education, and design, the following project intends to reconceptualize the learning environment in order facilitate place-based practices. Challenging our cognitive dissonant relationship with food, the design proposal establishes a food identity through an imposition of urban agriculture and culinary design onto the school environment. Working in conjunction with the New American University’s mission, the design serves as a didactic medium between food, education, and architecture in designing the way we eat.
ContributorsBone, Nicole (Author) / Rocchi, Elena (Thesis director) / Hejduk, Renata (Committee member) / Robert, Moric (Committee member) / The Design School (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for

Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for monitoring of transplant patient health is bimonthly blood draws, which are cumbersome, painful, and difficult to translate into urgently needed dosage changes in a timely manner. To improve long-term transplant survival rates, we propose a finger-prick sensor that will provide patients and healthcare providers with a measurement of tacrolimus, immune health (through IL-12), and kidney damage (through cystatin C) levels 100 times more frequently than the status quo. Additionally, patient quality of life will be improved due to reduction in time and pain associated with blood draws. Optimal binding frequencies for each marker were found. However, due to limitations with EIS, the integration of the detection of the three markers into one multimarker sensing platform has not yet been realized. To this end, impedance-time tests were run on each marker along with different antibodies, and optimal times of each marker were determined to be 17s, 6s, and 2s, for tacrolimus, cystatin c, and IL-12, respectively (n=6). The integration of impedance-time analysis with traditional EIS methodologies has the potential to enable multi-marker analysis by analyzing binding kinetics on a single electrode with respect to time. Thus, our results provide unique insight into possibilities to improve and facilitate detection of multiple markers not only for the sensor for solid organ transplant patients, but for the monitoring of patients with disease that also entail the observation of multiple markers. Furthermore, the use of impedance-time testing also provides the ability for another way to optimize accuracy/precision of marker detection because it specifies a particular time, in addition to a particular optimal binding frequency, at which to measure concentration.
ContributorsDoshi, Meera Kshitij (Author) / LaBelle, Jeffrey (Thesis director) / Steidley, Eric (Committee member) / Harrington Bioengineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134326-Thumbnail Image.png
Description
Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water

Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water protests to examine where protests happen and the causes associated with them. We analyze this information to illuminate socio-political issues associated with the city's water problems, such as political corruption, gentrification, as well as general power dynamics and lack of transparency between citizens, governments, and the private businesses which interact with them. We use text analysis of newspaper reports to analyze protest events in terms of the primary stimuli of water conflict, the areas within the city more prone to conflict, and the ways in which conflict and protest are used to initiate improved water management and to influence decision making to address water inequities. We found that water scarcity is the primary source of conflict, and that water scarcity is tied to new housing and commercial construction. These new constructions often disrupt water supplies and displace of minority or marginalized groups, which we denote as gentrification. The project demonstrates the intimate ties between inequities in housing and water in urban development. Key words: Conflict, protest, Mexico City, scarcity, new construction
ContributorsFlores, Shalae Alena (Author) / Eakin, Hallie C. (Thesis director) / Baeza-Castro, Andres (Committee member) / Lara-Valencia, Francisco (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136772-Thumbnail Image.png
Description
Since the start of U.S. hostilities against Iraq in 2003, International Relations scholars have begun to characterize the U.S. as potentially an empire. This is because the traditional notion of sovereignty under the Westphalian nation-state system is held as a constant in the prominent theories that govern how it is

Since the start of U.S. hostilities against Iraq in 2003, International Relations scholars have begun to characterize the U.S. as potentially an empire. This is because the traditional notion of sovereignty under the Westphalian nation-state system is held as a constant in the prominent theories that govern how it is thought how nation-states interact with each other. The blatant violation of international laws and norms with impunity by the U.S. have led to a re-questioning of the true dynamics underlying this system. Some scholars have characterized the recent research as a popular fad, but most of the research is aimed at just attempting to show how the U.S. could be an empire. What the current research is missing is how the U.S. became an empire, with that analysis anchored in an historical comparison. A complete chronological review of each system in its entirety is required, with all of its components, to more fully understand these phenomena. This has required researchers to devise a new methodological process of qualitatively and quantitatively analyzing macro structures. We believe the implications of the insights that can be obtained with this new method could be of use to many fields and can generate many new hypotheses to test in the future.
ContributorsRoche, Joshua Nathan (Author) / Crittenden, Jack (Thesis director) / Walker, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-12
136778-Thumbnail Image.png
Description
The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall shear stress, a fluid dynamic characteristic. In order to gain an understanding of these novel piezoelectric sensors, the experiments performed by Sodano and Koka were to be investigated, replicated, and results reproduced. After initial trial phases, signals failed to be consistently measured from the sensors and the project's emphasis was re-defined. The outlined goals were 1) to re-design the initial system used for signal acquisition, 2) test the improved signal acquisition system, 3) successfully measure output signals from the BaTiO3 nanowire sensors, and 4) determine the cause for inconsistent signal measurements from the piezoelectric nanawire sensors. Following a detailed review of the previous experimental procedures and the initial signal acquisition system, an improved acquisition system was designed and its expected behavior was tested and verified. Despite the introduction of the improved acquisition system, voltage outputs were unable to be measured as a function of shaker table acceleration. It was impossible to verify the effect of the improved signal acquisition system on the measured BaTiO3 nanowire sensor output. Based on an analysis of data collected using a commercial 3-axis acceleromoeter, it is hypothesized that the BaTiO3 nanowire sensors were broken after the first experimental trial due to an excessively applied force from an external source (i.e. shaker table, improper handling during experimentation, and/or improper handling during transportation).
ContributorsThomas, Jonah (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136597-Thumbnail Image.png
Description
In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on

In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on linearity and sensitivity and hysteresis of the sensors is also investigated for sensor optimization. It was found that there was a significant difference between the patterned and non-patterned samples. The patterned sensors were found to have a lower range of resistance than the non-patterned sensors and a smaller average standard of deviation between measurements. The 7 tension, lower linear yarn density, elastic patterned sample was the only sample to not exhibit hysteresis after three trials as well as have a linear range from 11.5cm to 13cm where the sensor behaves in accordance with a linear transfer function.
ContributorsBrown, Shannon (Co-author) / Irimata, Lisa (Co-author) / LaBelle, Jeffrey (Thesis director) / Hanson, Erika (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05