Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

Description
Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for

Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for monitoring of transplant patient health is bimonthly blood draws, which are cumbersome, painful, and difficult to translate into urgently needed dosage changes in a timely manner. To improve long-term transplant survival rates, we propose a finger-prick sensor that will provide patients and healthcare providers with a measurement of tacrolimus, immune health (through IL-12), and kidney damage (through cystatin C) levels 100 times more frequently than the status quo. Additionally, patient quality of life will be improved due to reduction in time and pain associated with blood draws. Optimal binding frequencies for each marker were found. However, due to limitations with EIS, the integration of the detection of the three markers into one multimarker sensing platform has not yet been realized. To this end, impedance-time tests were run on each marker along with different antibodies, and optimal times of each marker were determined to be 17s, 6s, and 2s, for tacrolimus, cystatin c, and IL-12, respectively (n=6). The integration of impedance-time analysis with traditional EIS methodologies has the potential to enable multi-marker analysis by analyzing binding kinetics on a single electrode with respect to time. Thus, our results provide unique insight into possibilities to improve and facilitate detection of multiple markers not only for the sensor for solid organ transplant patients, but for the monitoring of patients with disease that also entail the observation of multiple markers. Furthermore, the use of impedance-time testing also provides the ability for another way to optimize accuracy/precision of marker detection because it specifies a particular time, in addition to a particular optimal binding frequency, at which to measure concentration.
ContributorsDoshi, Meera Kshitij (Author) / LaBelle, Jeffrey (Thesis director) / Steidley, Eric (Committee member) / Harrington Bioengineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134325-Thumbnail Image.png
Description
This thesis project examines the likely factors that cause students to drop out of Barrett, the Honors College. Honors literature regarding retention and attrition suggests four areas encompassing individual student attributes and honors program characteristics which may impact a student's decision to stay or leave an Honors College. The primary

This thesis project examines the likely factors that cause students to drop out of Barrett, the Honors College. Honors literature regarding retention and attrition suggests four areas encompassing individual student attributes and honors program characteristics which may impact a student's decision to stay or leave an Honors College. The primary question in focus is, "Why do students leave the Honors College?" followed by the tertiary questions of, "what can be done to mitigate this occurrence?" and, "how does this affect the quality of an honors education?" Assessing attrition can be broken down into biographical, cognitive-behavioral, socio-environmental, and institutional-instrumental components. Students who graduated with honors and those who did not graduate with honors were assessed on these four components through survey methods and qualitative interviews to investigate specific reasons why students leave the honors program. The results indicated a wide array of reasons impacting student attrition, the most significant being negative perceptions towards (1) honors courses and contracts, (2) difficulty completing a thesis project, and (3) finding little to no value in "graduating with honors." Each of these reasons reflect the institutional-instrumental component of student attrition, making it the most salient group of reasons why students leave the Honors College. The socio-environmental component also influences student attrition through peer influence and academic advisor support, though this was found to be within the context of institutional-instrumental means. This project offers solutions to ameliorate each of the four components of attrition by offering standardized honors contracts and more mandatory honors classes, mandatory thesis preparatory courses instead of workshops, and emphasizing the benefit Barrett gives to students as a whole. These solutions aim at increasing graduation rates for future honors students at Barrett as well as improving the overall quality of an honors education.
ContributorsSanchez, Gilbert Xavier (Author) / Parker, John (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Criminology and Criminal Justice (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134605-Thumbnail Image.png
Description
The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection

The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection for diseases and cancers is done with a bio sensor, which a broad term used to describe an instrument which uses a bio chemical reaction to detect a chemical compound with the use of a bio recognition event in addition to a signal detection event. The bio sensors which are presented in this work are known as ion-sensitive field effects transistors (ISFETs) and are similar in function to a metal oxide field effect transistor (MOSFET). These ISFETs can be used to sense pH or the concentration of protons on the surface of the gate channel. These ISFETs can be used for certain bio recognition events and this work presents the application of these transistors for the quantification of tumor cell proliferation. This includes the development of a signal processing and acquisition system for the long term assessment of cellular metabolism and optimizing the system for use in an incubator. This thesis presents work done towards the optimization and implementation of complementary metal\u2014oxide\u2014semiconductor (CMOS) ISFETs as well as remote gate ISFETs for the continuous assessment of tumor cell extracellular pH. The work addresses the challenges faced with the fabrication and optimization of these sensors, which includes the mitigation of current drift with the use of pulse width modulation in addition to issues encountered with fabrication of electrodes on a quartz substrate. This work culminates in the testing of an autonomous system with mammary tumor cells as well as the assessment of cell viability in an incubator over extended periods. Future applications of this work include the creation of a remote gate ISFET array for multiplexed detection as well as the implementation of ISFETs for bio marker detection via an immunoassay.
ContributorsArafa, Hany Mohamed (Author) / Blain Christen, Jennifer (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134610-Thumbnail Image.png
Description
Undergraduate on-campus residential education is a topic of significant inquiry within the field of higher education, and specifically student affairs. It has become commonplace for institutions of higher education in the United States to leverage the intersections between academics and residence life in order to promote student success by offering

Undergraduate on-campus residential education is a topic of significant inquiry within the field of higher education, and specifically student affairs. It has become commonplace for institutions of higher education in the United States to leverage the intersections between academics and residence life in order to promote student success by offering on-campus housing options that strategically place students in residential communities that provide additional connection to the students' academic experience, often by major, college, department, or other focus areas. Such models vary by institution, but are often referred to as living-learning communities or residential colleges, depending upon their structure and goals. For example, Barrett, the Honors College on the Tempe campus of Arizona State University implements a residential college model within its student housing; honors students live and study together, with the addition of three "special communities" designed for students majoring in Engineering, Business, or the Arts. This honors thesis case study describes and investigates the impact the visual and performing arts Barrett residential community has upon its residents in their first-year college experience. Through the lens of student development theory, this research focuses upon examining this specific residential community in detail in order to gain an understanding of its effect upon residents' academic and personal well being.
ContributorsBieschke, Sara Danielle (Author) / O'Flaherty, Katherine (Thesis director) / Rendell, Dawn (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134395-Thumbnail Image.png
Description"Writing the Races" is a documentary exploring how two writers talk about race in their comedy television shows. http://www.writingtheraces.com/
ContributorsTyau, Nicole Jenice (Author) / Rodriguez, Rick (Thesis director) / O'Flaherty, Katherine (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134397-Thumbnail Image.png
Description
This paper proposes a new socket design to complement Project Fishbone, a design project focused on creating a lightweight transradial prosthetic device. The socket has a simple concept of introducing perforations on the surface of the socket using cost effective, and rapid manufacturing methods such as vacuum thermoforming and drilling.

This paper proposes a new socket design to complement Project Fishbone, a design project focused on creating a lightweight transradial prosthetic device. The socket has a simple concept of introducing perforations on the surface of the socket using cost effective, and rapid manufacturing methods such as vacuum thermoforming and drilling. The perforations on the socket allows for greater air ventilation to the prosthetic user's residual skin thus reducing the temperature within the socket. There were nine primary design iterations that were tested: 0.125, 0,187, 0.25-inch-thick designs, and 3/16, 15/64, 17/64-inch perforation sizes, and 12, 18 and 24 count of perforations. Initial test was done using the sockets of different thickness without any perforations to check for uniformity in design and manufacturing method using a regression test. It was found that an increase in thickness directly related to an increase in temperature cooling time. The temperature cooling test was run using a three-factor DOE method and no clear interaction between the factors was observed, thus the Kruskal-Wallis statistical test along with the post hoc Mann-Whitney test to check for significance among the factors as well as significance of groups within the factors. Statistical significance (p<0.05) was found in the socket thickness and size of perforations. Additionally, significance (p<0.02) was found in the 0.125 and 0.187-inch thickness and the 3/16-inch size perforations. Based on the significance between each group, the best combination for increased cooling time reduction was thus found to be with the 0.125-inch thick HDPE sheet and 3/16-inch sized perforation while the number of perforations did not make much difference. These results proved the concept of this new socket design that could be implemented into existing upper limb prosthetic systems.
ContributorsSebastian, Frederick (Author) / LaBelle, Jeffrey (Thesis director) / Lathers, Steven (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134592-Thumbnail Image.png
Description
Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or

Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or amplify signal, and if signal is amplified when using an Ag/AgCl working electrode. From the results, it was determined that EPOP is neither a redox mediator, since it cannot transfer its own electrons, nor an electron mediator, since it does not amplify measured current at a specific voltage. Rather, it behaves as an electron sink capacitor with inconsistent behavior when Ag/AgCl is used as the working electrode with the redox mediator alone or with the redox mediator using in combination with glucose oxidase (GOx) and glucose. This was validated using AC-Impedance which gave a -3.3999 slope for isolated 0.05 g/mL EPOP in solution and R2 value of 0.992 displaying it had more capacitor-like behavior compared to resistor-like behavior. For this reason, EPOP was infused into a carbon screen-printed electrode by adding it dissolved and undissolved at two levels into carbon ink. The effectiveness of this electrode was tested using a potentiostatic CV. For the 0.1 g/mL EPOP dissolved in carbon ink, the reduction voltage peak (0.18 V) was found to be slightly higher than a GDE (0.14 V); however, the measured current was found to be 1.57 times the amplitude of a GDE. When 0.05 g/mL EPOP in PBS dissolved in graphite ink was used to detect glucose as the working electrode, there was increased signal amplification, and therefore, increased sensitivity to glucose when using EPOP infused electrodes. This offers promising results for disposable glucose sensors.
ContributorsKapadia, Meera Vipul (Author) / LaBelle, Jeffrey (Thesis director) / Islam, Rafiqul (Committee member) / Honikel, Mackenzie (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134441-Thumbnail Image.png
Description
Improved pancreatic cancer diagnostic technology has the potential to improve patient prognosis by increasing cancer screening rates and encouraging early detection of the cancer. To increase the sensitivity and specificity while decreasing the cost and time investment, the emerging detection method of electrochemical impedance spectroscopy (EIS) was tested to detect

Improved pancreatic cancer diagnostic technology has the potential to improve patient prognosis by increasing cancer screening rates and encouraging early detection of the cancer. To increase the sensitivity and specificity while decreasing the cost and time investment, the emerging detection method of electrochemical impedance spectroscopy (EIS) was tested to detect two pancreatic cancer specific biomarkers. The antibodies of carcinoembryonic antigen and quiescin sulfhydryl oxidase 1 were immobilized individually to gold disk electrodes and tested for binding to their respective antigens. An AC signal of varying potential and a wide frequency sweep was applied to the electrode system and the resulting imaginary impedance values were analyzed. Based off of the highest slope and R-squared values of the collected impedance values, the optimal binding frequencies of QSOX1 and CEA with their antibodies was determined to be 97.66 Hz and 17.44 Hz, respectively. EIS was also used to test for potential multimarker detection by coimmobilizing anti-CEA and anti-QSOX1 to the surface of gold disk electrodes. Each system's impedance response was correlated to the physiological concentration range of CEA and QSOX1 individually. The resulting impedance and concentration calibration curves had R-squared values of 0.78 and 0.79 for the calculated QSOX1 and CEA, respectively. Both markers showed similar trends between the calculated and actual calibration curves for each marker. The imaginary impedance output lacks two independent peaks for the distinct optimal binding frequencies of both biomarkers after signal subtraction and show a large shift in optimal frequencies. From analyzing the co-immobilization data for the calculated and experimentally determined calibration curves of CEA and QSOX1, both curves had different correlation values between imaginary impedance values and concentration. Add and subtracting the experimental and calculated co-immobilization, QSOX1, and CEA signals suggest an oversaturation of QSOX1 used during the experiments.
ContributorsMalla, Akshara (Co-author) / Murali, Keerthana (Co-author) / LaBelle, Jeffrey (Thesis director) / Lin, Chi-En (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134721-Thumbnail Image.png
Description
Every year, millions of people find themselves displaced from their homes because of fear or threats of violence. Some of these people will become refugees, who will then be resettled in the United States. In order to help with the resettlement process, refugees are given cultural orientations through their resettlement

Every year, millions of people find themselves displaced from their homes because of fear or threats of violence. Some of these people will become refugees, who will then be resettled in the United States. In order to help with the resettlement process, refugees are given cultural orientations through their resettlement organizations. The Phoenix Police Department teaches one of these cultural orientations for local resettlement agencies in order to dispel some of the fears refugees have about law enforcement and build a stronger relationship with the refugee community. Past research on this topic has been limited within the United States, but communities are still trying to figure out how to interact with refugees despite not knowing how to do it. There are various possible complications inherent in the integration process and many potential methods of trust building available to the refugee community and public services like law enforcement. This project seeks to understand the refugee resettlement process through field observation of the cultural orientation taught by the Phoenix Police Department and interviews with detectives familiar with the process in Phoenix. Cultural and language differences as well as lack of education and research on the topic of refugee resettlement are all key points in comprehending what the police, refugees, and resettlement organizations are doing during the integration process. Once these issues are addressed to alleviate gaps in knowledge about refugees, it may be possible to adjust the process to be easier for stakeholders involved in refugee resettlement.
ContributorsBaumgartner, Rachel Paige (Author) / Telep, Cody (Thesis director) / O'Flaherty, Katherine (Committee member) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134548-Thumbnail Image.png
Description
This creative project is a collection of profiles focused on Arizona nonprofits and refugees. The profiles share stories of refugees, volunteers, employees and others involved in the community serving refugees. Nonprofits are a vital resource for refugee resettlement. These organizations offer services to support refugees as they transition into new

This creative project is a collection of profiles focused on Arizona nonprofits and refugees. The profiles share stories of refugees, volunteers, employees and others involved in the community serving refugees. Nonprofits are a vital resource for refugee resettlement. These organizations offer services to support refugees as they transition into new communities. Some services include: housing, English language learning, cultural orientation, job placement, medical treatment, education, and farming. Each of these programs support resiliency for refugees and for the communities in which they live. We Are Resilient was created first, to show the important role nonprofits have in serving refugees. Second, to connect people to a few of the stories and experiences within the Arizona refugee community. And third, to build understanding of the strength refugees bring to communities of Arizona and by extension the country. Visit weareresilientaz.com to learn more.
ContributorsGray, Elizabeth (Co-author) / Johnson, Kelcie (Co-author) / Shockley, Gordon (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Community Resources and Development (Contributor) / School of Sustainability (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05