Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 222
Filtering by

Clear all filters

133370-Thumbnail Image.png
Description
The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the

The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the decomposition of human cadavers affects the bioavailability of essential plant nutrients (P, K, Ca, Fe, C and N) as well as toxins (As and Pb) in soil. By studying the bioavailability of plant nutrients, especially nitrogen, and toxins, this research hopes to inform new technologies and techniques for locating clandestine gravesites. The objectives of this study were twofold: 1) determine whether soils exposed to cadaveric decomposition can be visually distinguished from one another via macroscopic and microscopic observation and 2) observe general changes in nutrient and toxic element bioavailability and changes in carbon and nitrogen isotope ratios over time as well as spatially across a body. Visual analyses of soil samples, both macro- and microscopically did not show potential in distinguishing soil exposed to cadaver decomposition from unexposed soil. Relative bioavailability as well as overall bioavailable concentrations of both plant nutrients and toxins were highly elevated after 12 months. Toxins, such as As and Pb, tended to have greater bioavailable concentrations at the near-torso positions, though no consistent spatial trends between nutrient bioavailable concentrations were observed between the three individuals. Nitrogen concentrations and nitrogen isotope (δ15N) ratios show strong potential as markers of clandestine graves throughout the study period. While this research demonstrates further need to uncover what factors influence bioavailability of elements in gravesoil, it shows that the bioavailability of plant nutrients and toxins as well as δ15N ratios are greatly affected by cadaver decomposition, and emerging technologies in gravesite detection based on plant or soil changes have a solid foundation.
ContributorsAnderson, Sara Rae (Author) / Kobojek, Kimberly (Thesis director) / Gordon, Gwyneth (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131495-Thumbnail Image.png
Description
Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a

Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a justice system can achieve this. This investigation analyzed two ethical theories, Kantianism and Utilitarianism, to determine which one would be better suited for guiding a criminal justice system on how to treat the people involved ethically. This investigation focused on applying the two theories to the U.S. Criminal Justice System in particular.
Kantianism is a duty-based moral theory in which actions have an intrinsic moral worth. This means certain actions are morally right and other are morally wrong, regardless of the intended or realized consequences. The theory relies on the categorical imperative to judge the morality of certain actions. It states that an action is moral if its maxim can be willed universal law and if it avoids treating people as merely a means. In contrast, Utilitarianism is a consequentialist theory which focuses on the consequences of an action in judging moral worth. In Utilitarianism, the morally correct action is the one which will maximize utility; that is to say, the morally right action is the one which will produce the greatest amount of happiness and minimize the amount of pain for the greatest number of people.
After applying these two theories to moral dilemmas facing the U.S. Criminal Justice System, including the appropriate collection of DNA evidence, the use of police deception, and the use of criminal punishments such as solitary confinement or the death penalty, it was clear that Kantianism was the ethical theory best suited for guiding the system in treating people ethically. This is because Kantianism’s focus on the intrinsic moral worth of an action rather than its consequences leaves less room for ambiguity than does Utilitarianism.
ContributorsMorett, Xavier Laakea (Author) / Manninen, Bertha (Thesis director) / Kimberly, Kobojek (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131505-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsMintz, David Anthony (Co-author) / Parker, Augustus (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131506-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsParker, Augustus Carrucciu (Co-author) / Mintz, David (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131513-Thumbnail Image.png
Description
Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be

Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be conducted to determine an initial plating density that will result in this ideal confluency, which can be costly. To help alleviate this common issue, a mathematical model was developed that describes the dynamics of the cell population used in these experiments. To develop the model, images of cells from different three-day experiments were analyzed in Photoshop®, giving a measure of cell count and confluency (the percentage of surface area covered by cells). The cell count data were then fitted into an exponential growth model and were correlated to the cell confluency to obtain a relationship between the two. The resulting mathematical model was then evaluated with data from an independent experiment. Overall, the exponential growth model provided a reasonable and robust prediction of the cell confluency, though improvements to the model can be made with a larger dataset. The approach used to develop this model can be adapted to generate similar models of different cell-lines, which will reduce the number of preliminary range-finding experiments. Reducing the number of these preliminary experiments can save valuable time and experimental resources needed to conduct studies using cellular assays.
ContributorsGuerrero, Victor Dominick (Co-author) / Guerrero, Victor (Co-author) / Watanabe, Karen (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131520-Thumbnail Image.png
Description
A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as

A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as well as synthesizing information about accelerant composition to interpret GC-MS data output. This would allow the student to experience first-hand what the subsection of arson analysis has to offer in the field of forensic science which could help the student decide on more specialties to study later on. I was unable to run the lab protocol in a laboratory setting, therefore in the future I want to use the lab protocol and receive feedback in order to improve the protocol so the student is receiving the best possible learning outcomes. The experience of creating a lab protocol in forensic science gave myself a greater understanding of what goes on behind an academic learning procedure and more insight on arson evidence analysis.
Created2020-05
134153-Thumbnail Image.png
Description
Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where

Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where those values were then used to determine the total Scoville heat units (SHU). Furthermore, half-life was determined by finding the decay rate during cooking and storage. Results showed that there was an increase in degradation of capsaicinoids concentration when peppers were cooked for a long period of time. Degradation rate increases with increasing temperatures as would be expected by the Arrhenius equation. Hence, if a maximum pungency is wanted, it is best to cook the least time as possible or add the peppers towards the end of the culinary technique. This would help by cooking the peppers for a short period of time while not being exposed to the high temperature long enough before significant degradation occurs. Lastly, the storage stability results interpreted that a maximum potency of the peppers can be retained in a freezer or refrigerator opposed to an open room temperature environment or exposure from the sun. Furthermore, the stability of peppers has a long shelf life with even that the worse storage condition's half-life value was 113.5 months (9.5 years). Thus, peppers do not need to be bought frequently because its potency will last for several years.
ContributorsBustamante, Krista Gisselle (Author) / Cahill, Thomas (Thesis director) / Sweat, Ken (Committee member) / Armendariz Guajardo, Jose (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134160-Thumbnail Image.png
Description
Throughout my experience in college, I learned many different techniques to communicate effectively. Most professors emphasized the importance of speaking clearly, and the ability to influence others. Dr. Kashiwagi piqued my interest when he explained his thoughts on how he wanted us to communicate to him. The criteria were simple,

Throughout my experience in college, I learned many different techniques to communicate effectively. Most professors emphasized the importance of speaking clearly, and the ability to influence others. Dr. Kashiwagi piqued my interest when he explained his thoughts on how he wanted us to communicate to him. The criteria were simple, speak to him in a way that he could easily understand, without having to think. If thinking took place for him in the conversation, he determined that the person spoke too complexly and that his understanding of the student was low. After hearing this in class, I thought back to past conversations with my managers. I then wondered if I explained things clearer or simplified my wording, would things have gone better? I was also curious about simplicity in communication through writing, and how different presentations of information affected understanding. To further analyze these issues, I explored multiple research reports on verbal communication. Furthermore, I set up an experiment to test two common types of visual communication. The research concludes that Dr. Kashiwagi's theory was indeed correct, simplicity in conversation reduces miscommunication. The effectiveness of simplicity in written communication was partially proven by the survey results. The results indicated that the time required to fully understand a given topic dropped significantly if the information was depicted in a simplified format (list format). The more complex paragraph (textbook format) did have a higher level of understanding. However, the participants rated the textbook format job objectives as more complex, and stressful. After gathering the research, and running the experiment it can be concluded that by simplifying verbal communication, there are negligible differences in understanding of the topic, but the time of understanding decreases significantly.
ContributorsWilliams, Matthew Scott (Author) / Kashiwagi, Jacob (Thesis director) / Abraham, Seth (Committee member) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135570-Thumbnail Image.png
Description
There is a disconnect between the way people are taught to find success and happiness, and the results observed. Society teaches us that success will lead to happiness. Instead, it is argued that success is engrained in happiness. Case studies of four, established, successful people: Jack Ma, Elon Musk, Ricardo

There is a disconnect between the way people are taught to find success and happiness, and the results observed. Society teaches us that success will lead to happiness. Instead, it is argued that success is engrained in happiness. Case studies of four, established, successful people: Jack Ma, Elon Musk, Ricardo Semler, and William Gore, have been conducted in order to observe an apparent pattern. This data, coupled with the data from Michael Boehringer's story, is used to formulate a solution to the proposed problem. Each case study is designed to observe characteristics of the individuals that allow them to be successful and exhibit traits of happiness. Happiness will be analyzed in terms of passion and desire to perform consistently. Someone who does what they love, paired with the ability to perform on a regular basis, is considered to be a happy person. The data indicates that there is an observable pattern within the results. From this pattern, certain traits have been highlighted and used to formulate guidelines that will aid someone falling short of success and happiness in their lives. The results indicate that there are simple questions that can guide people to a happier life. Three basic questions are defined: is it something you love, can you see yourself doing this every day and does it add value? If someone can answer yes to all three requirements, the person will be able to find happiness, with success following. These guidelines can be taken and applied to those struggling with unhappiness and failure. By creating such a formula, the youth can be taught a new way of thinking that will help to eliminate these issues, that many people are facing.
ContributorsBoehringer, Michael Alexander (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Department of Management (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Finance (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135580-Thumbnail Image.png
Description
Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been shown to develop cardiovascular disease and cognitive impairments, and those

Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been shown to develop cardiovascular disease and cognitive impairments, and those who have displayed overexpression of FOXO3 have shown to have a longer lifespan. Here we took each pathway and attempted to formulate a feedback mechanism loop linking all three separate pathways. We propose that vitamin D levels modulate klotho activity, including the expression of the s-klotho and m-klotho isoforms. Moreover, the anti-oxidation transcription factor FOXO3 is also thought to participate in crosstalk with VDR signaling. Through the connection between 1,25D and Klotho, we probed at their interactions with FOXO3 signaling in kidney and colon cells, and proposed that vitamin D and klotho may reduce oxidative stress and suppress the onset of epithelial cancers through it effects on FOXO3. Results showed a strong support for the cooperation between FOXO3 and 1,25D to stimulate both superoxide dismutase (a FOXO3 response element) and XDR3/ROC (vitamin D response elements). This cooperation was mostly seen in embryonic kidney cells (HEK293) and not in the colon cancer cells (HCT116), which has led to the conclusion that vitamin D and FOXO3 cooperation mainly occurs in kidney tissue and/or in tissue that is not yet been overtaken by cancer. Differences in the Klotho isoforms were seen when measuring FOXO3 and vitamin D activity, but experiments manipulating other components will need to be conducted to further understand the function of Klotho in maintaining reactive oxygenated species levels.
ContributorsSandoval, Ruby (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd R. (Committee member) / Heck, Michael (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05