Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description
Within recent years, the drive for increased sustainability within large corporations has drastically increased. One critical measure within sustainability is the diversion rate, or the amount of waste diverted from landfills to recycling, repurposing, or reselling. There are a variety of different ways in which a company can improve their

Within recent years, the drive for increased sustainability within large corporations has drastically increased. One critical measure within sustainability is the diversion rate, or the amount of waste diverted from landfills to recycling, repurposing, or reselling. There are a variety of different ways in which a company can improve their diversion rate, such as repurposing paper. A conventional method would be to simply have a recycling bin for collecting all paper, but the concern for large companies then becomes a security issue as confidential papers may not be safe in a traditional recycling bin. Salt River Project (SRP) has tackled this issue by hiring a third-party vendor (TPV) and having all paper placed into designated, secure shredding bins whose content is shredded upon collection and ultimately recycled into new material. However, while this effort is improving their diversion, the question has arisen of how to make the program viable in the long term based on the costs required to sustain it. To tackle this issue, this thesis will focus on creating a methodology and sampling plan to determine the appropriate level of a third-party recycling service required and to guide efficient bin-sizing solutions. This will in turn allow for SRP to understand how much paper waste is being produced and how accurately they are being charged for TPV services.
ContributorsHolladay, Amy E. (Author) / Escobedo, Adolfo (Thesis director) / Kucukozyigit, Ali (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130926-Thumbnail Image.png
Description
The outbreak of the coronavirus has impacted retailers and the food industry after they were forced to switch to delivery services due to social distancing measures. During these times, online sales and local deliveries started to see an increase in their demand - making these methods the new way of

The outbreak of the coronavirus has impacted retailers and the food industry after they were forced to switch to delivery services due to social distancing measures. During these times, online sales and local deliveries started to see an increase in their demand - making these methods the new way of staying in business. For this reason, this research seeks to identify strategies that could be implemented by delivery service companies to improve their operations by comparing two types of p-median models (node-based and edge-based). To simulate demand, geographical data will be analyzed for the cities of San Diego and Paris. The usage of districting models will allow the determination on how balance and compact the service regions are within the districts. After analyzing the variability of each demand simulation run, conclusions will be made on whether one model is better than the other.
ContributorsAguilar, Sarbith Anabella (Author) / Escobedo, Adolfo (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12