Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

133192-Thumbnail Image.png
Description
At Arizona State University, the Disability Resource Center provides disabled students transportation around campus. This transportation service known as DART is composed of approximately 20 student workers and 9 carts that pick riders up based on pre-determined pick-up times and locations. With the current system, the scheduling of drivers to

At Arizona State University, the Disability Resource Center provides disabled students transportation around campus. This transportation service known as DART is composed of approximately 20 student workers and 9 carts that pick riders up based on pre-determined pick-up times and locations. With the current system, the scheduling of drivers to riders is inefficient, and in response, a tool was developed to schedule the rides in a faster manner. A demonstration of the new tool resulted in a time reduction of 98%.
ContributorsFranke, Alexandra Nicole (Author) / Clough, Michael (Thesis director) / Jennings, Cheryl (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133125-Thumbnail Image.png
Description

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project.

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project. Cost overruns, schedule changes, and other natural risks must be managed effectively. But what happens when a project manager is tasked with delivering an attraction that needs to withstand harsh weather conditions, and millions of people enjoying it every year, for a company with arguably the highest standards for quality and guest satisfaction? This would describe the project managers at Walt Disney Imagineering (WDI) and the projects they oversee have tight budgets, aggressive schedules and require a bit more pixie dust than other engineering projects. However, the universal truth is that no matter the size or the scope of the endeavor, project management processes are absolutely essential to ensuring that every team member can effectively collaborate to deliver the best product.

ContributorsBaker, Molly (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132984-Thumbnail Image.png
Description
The listing price of residential rental real estate is dependent upon property specific attributes. These attributes involve data that can be tabulated as categorical and continuous predictors. The forecasting model presented in this paper is developed using publicly available, property specific information sourced from the Zillow and Trulia online real

The listing price of residential rental real estate is dependent upon property specific attributes. These attributes involve data that can be tabulated as categorical and continuous predictors. The forecasting model presented in this paper is developed using publicly available, property specific information sourced from the Zillow and Trulia online real estate databases. The following fifteen predictors were tracked for forty-eight rental listings in the 85281 area code: housing type, square footage, number of baths, number of bedrooms, distance to Arizona State University’s Tempe Campus, crime level of the neighborhood, median age range of the neighborhood population, percentage of the neighborhood population that is married, median year of construction of the neighborhood, percentage of the population commuting longer than thirty minutes, percentage of neighborhood homes occupied by renters, percentage of the population commuting by transit, and the number of restaurants, grocery stores, and nightlife within a one mile radius of the property. Through regression analysis, the significant predictors of the listing price of a rental property in the 85281 area code were discerned. These predictors were used to form a forecasting model. This forecasting model explains 75.5% of the variation in listing prices of residential rental real estate in the 85281 area code.
ContributorsSchuchter, Grant (Author) / Clough, Michael (Thesis director) / Escobedo, Adolfo (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133019-Thumbnail Image.png
Description
This study aims to explore the prevalence of smartphone, smartwatch, and fitness tracker ownership among college students, and compare the popularity of each device in tracking health-related habits such as physical activity, eating, and sleep. In addition, this study aims to analyze the effectiveness of each device for achieving personal

This study aims to explore the prevalence of smartphone, smartwatch, and fitness tracker ownership among college students, and compare the popularity of each device in tracking health-related habits such as physical activity, eating, and sleep. In addition, this study aims to analyze the effectiveness of each device for achieving personal health goals in all three categories. Research for this study was conducted using an Institutional Review Board (IRB) approved survey that was distributed electronically to various Greek and student organizations around Arizona State University campuses. In total, 183 responses were considered, with participants ranging from ages 18 to 23. Participants were required to own or possess a smartphone to be eligible to complete the survey. After seven days of data collection, the results were then analyzed using Qualtrics. The results revealed that smartwatch and fitness tracker ownership is not prevalent within the Arizona State University demographic. In addition, after comparing device popularity across each habit-tracking category, it is apparent that the smartphone is the most used device for tracking. Finally, when looking at device effectiveness in relation to achieving health goals, smartwatches consistently scored higher than smartphones. Supplemental research should be conducted to further explore the prevalence and effectiveness of habit tracking. This research should include a larger sample size and a more evenly spread gender demographic.
ContributorsMeyer, Allison Hope (Author) / Levinson, Simin (Thesis director) / Carr, Natasha (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132168-Thumbnail Image.png
Description
During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The second being a capstone project based out of Arizona State’s design school:
Innovation

During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The second being a capstone project based out of Arizona State’s design school:
Innovation Space. The purpose of this dual enrollment was to compare and contrast the two product development projects,
in hopes to recommend a course of action to engineers younger than myself who are presented the option of multiple
capstones. This report will elaborate on three areas of engineering design and how they were realized in these projects.
These 3 topics are product development and its effect on design to manufacture, design feature creep, and technical vs
non-technical design. After considering the pros and cons of both capstone projects and their relation to the three main
topics of this report, it was decided that individuals who are motivated to become the best engineers they can be upon
graduating from an undergraduate program, they should find the time to take both capstone courses. Both Design of
Autonomous Aircraft Systems and Innovation Space present opportunities to create new ways of engineering thinking, all
of which will be necessary for an engineer to succeed in his/her first years in industry.
ContributorsEll, Samuel Leo (Author) / Hedges, Craig (Thesis director) / Kuhn, Anthony (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132326-Thumbnail Image.png
Description
The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using

The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using LQR methodology. A prototype was then built and tested to exhibit desired reference command following and disturbance attenuation.
ContributorsKapron, Mark Andrew (Author) / Rodriguez, Armando (Thesis director) / Artemiadis, Panagiotis (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132380-Thumbnail Image.png
Description
Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to

Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to explore ways to extend healthcare services in minimal waiting times. This thesis research utilizes Arena, a discrete event simulation software, to analyze waiting times in a typical hospital setting. It goes on to explore the impact of cross training of hospital personnel in meeting the critical needs of patients while minimizing waiting times. Simulation output data were analyzed, and cross training was found to have significant impact on reducing waiting time when: intake of patients is higher than current (original) arrival rate, intake of appointment patients is highest, or intake of emergency patience is highest of the three patient categories.
ContributorsBusisi, Jeanbat (Author) / Theodore, Pavlic (Thesis director) / Feng, Ju (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132760-Thumbnail Image.png
Description
Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or

Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or knee procedures that are revised due to an infection is 1.23% and 1.21% respectively[3], [4]. Although the percent of infections may be small, an infection can have a tremendous burden on the patient and healthcare system. It is expected that prosthetic joint infections (PJIs) will cost the healthcare system an estimated $1.62 billion by 2020[5]. PJIs are often difficult to treat due to the formation of biofilm at the site of the infection. A large majority of PJIs are the result of a bacterial biofilm, but around 1% of PJIs are due to fungal infections[3]. The current method of treatment is to surgically remove all infected tissue at the site of infection through a process called debridement and then insert a medicated bone cement spacer[7], [10]–[12]. One such medication that is loaded into the bone cement is caspofungin, a member of the echinocandin class of compounds that inhibit the synthesis of 1,3-β-D-glucan which is a crucial element of the cell wall of the target fungi[13]–[15]. For the studies reported herein, the caspofungin-loaded bone cement samples were made at 5 dosage strengths according to standard operating room practices. The elution of the drug was analyzed using ultraviolet spectrophotometry. The elution profiles were analyzed for 19 days consecutively, during which the 70 mg, 1 g, and 5 g dosage groups showed a prolonged, sustained release of the caspofungin. The 70 mg and 1 g dosage cumulative mass release profiles were not statistically significant, but it is unlikely that the difference would not have a clinical significance especially in the treatment of a fungal biofilm infection. The determination of the elution profile for caspofungin from loaded-bone cement can provide clinicians with a basis for how the drug will release into the infected joint.
ContributorsMoore, Rex C. (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132761-Thumbnail Image.png
Description
Rapid advancements in Artificial Intelligence (AI), Machine Learning, and Deep Learning technologies are widening the playing field for automated decision assistants in healthcare. The field of radiology offers a unique platform for this technology due to its repetitive work structure, ability to leverage large data sets, and high position for

Rapid advancements in Artificial Intelligence (AI), Machine Learning, and Deep Learning technologies are widening the playing field for automated decision assistants in healthcare. The field of radiology offers a unique platform for this technology due to its repetitive work structure, ability to leverage large data sets, and high position for clinical and social impact. Several technologies in cancer screening, such as Computer Aided Detection (CAD), have broken the barrier of research into reality through successful outcomes with patient data (Morton, Whaley, Brandt, & Amrami, 2006; Patel et al, 2018). Technologies, such as the IBM Medical Sieve, are growing excitement with the potential for increased impact through the addition of medical record information ("Medical Sieve Radiology Grand Challenge", 2018). As the capabilities of automation increase and become a part of expert-decision-making jobs, however, the careful consideration of its integration into human systems is often overlooked. This paper aims to identify how healthcare professionals and system engineers implementing and interacting with automated decision-making aids in Radiology should take bureaucratic, legal, professional, and political accountability concerns into consideration. This Accountability Framework is modeled after Romzek and Dubnick’s (1987) public administration framework and expanded on through an analysis of literature on accountability definitions and examples in military, healthcare, and research sectors. A cohesive understanding of this framework and the human concerns it raises helps drive the questions that, if fully addressed, create the potential for a successful integration and adoption of AI in radiology and ultimately the care environment.
ContributorsGilmore, Emily Anne (Author) / Chiou, Erin (Thesis director) / Wu, Teresa (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05