Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

3D printing prosthetics for amputees is an innovative opportunity to provide a lower cost and customized alternative to current technologies. Companies, such as E-NABLE and YouBionic are developing myoelectric prosthetics, electrically powered terminal devices activated by electromyography (EMG), for transradial amputees. Prosthetics that are 3D printed are less expensive for

3D printing prosthetics for amputees is an innovative opportunity to provide a lower cost and customized alternative to current technologies. Companies, such as E-NABLE and YouBionic are developing myoelectric prosthetics, electrically powered terminal devices activated by electromyography (EMG), for transradial amputees. Prosthetics that are 3D printed are less expensive for juvenile use, more sustainable, and more accessible for those without insurance. Although they are typically not outfitted with the same complex grip patterns or durability of a traditional myoelectric prosthetic, they offer a sufficient durability (withstanding up to 150 N on average) and allow for new opportunities in prosthetic development. Devils Prosthetics, a student research and development group associated with Engineering Projects in Community Service (EPICS), has investigated the benefits and pitfalls of utilizing polyethylene terephthalate glycol (PETG) for 3D printing prosthetics as well as combining a MyoWare EMG sensor with machine learning for optimal control of the prosthetic.

ContributorsAlessio, Gabriella (Author) / Gryskiewicz, Jarek (Co-author) / Hiramine, Jason (Co-author) / Schoepf, Jared (Thesis director) / Shimono, Satoshi (Committee member) / Nemgar, Noah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05
Description

3D printing prosthetics for amputees is an innovative opportunity to provide a lower cost and customized alternative to current technologies. Companies, such as E-NABLE and YouBionic are developing myoelectric prosthetics, electrically powered terminal devices activated by electromyography (EMG), for transradial amputees. Prosthetics that are 3D printed are less expensive for

3D printing prosthetics for amputees is an innovative opportunity to provide a lower cost and customized alternative to current technologies. Companies, such as E-NABLE and YouBionic are developing myoelectric prosthetics, electrically powered terminal devices activated by electromyography (EMG), for transradial amputees. Prosthetics that are 3D printed are less expensive for juvenile use, more sustainable, and more accessible for those without insurance. Although they are typically not outfitted with the same complex grip patterns or durability of a traditional myoelectric prosthetic, they offer a sufficient durability (withstanding up to 150 N on average) and allow for new opportunities in prosthetic development. Devils Prosthetics, a student research and development group associated with Engineering Projects in Community Service (EPICS), has investigated the benefits and pitfalls of utilizing polyethylene terephthalate glycol (PETG) for 3D printing prosthetics as well as combining a MyoWare EMG sensor with machine learning for optimal control of the prosthetic.

ContributorsHiramine, Jason (Author) / Alessio, Gabriella (Co-author) / Gryskiewicz, Jarek (Co-author) / Schoepf, Jared (Thesis director) / Shimono, Satoshi (Committee member) / Nemgar, Noah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2023-05