Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

162194-Thumbnail Image.png
ContributorsAcevedo, Rodrigo (Author, Co-author) / Rajadas, John (Thesis director) / Nam, Changho (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
162195-Thumbnail Image.png
ContributorsAcevedo, Rodrigo (Author, Co-author) / Rajadas, John (Thesis director) / Nam, Changho (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
Description

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material without damaging the part. I will be going over options to consider when designing parts to ensure a given model will be able to be printed without support material.

ContributorsYoshitake, Jacob (Author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
165095-Thumbnail Image.png
Description

The current Solid-State Electrolyte (SSE) used in Li-ion batteries are limited by their current production methods (i.e., die-pressing; tape casting), planar geometries and random porosities. This constrains their use for mass production in manufacturing plants. 3D-printing of SSEs, however, is a new, highly-researched method that shows promise in expanding beyond

The current Solid-State Electrolyte (SSE) used in Li-ion batteries are limited by their current production methods (i.e., die-pressing; tape casting), planar geometries and random porosities. This constrains their use for mass production in manufacturing plants. 3D-printing of SSEs, however, is a new, highly-researched method that shows promise in expanding beyond the laboratory to more large-scale industrial production as rapid prototyping takes place. Indeed, laboratory studies to date suggest that SSE technology is safer than current production methods and provides a safe high energy solid-state battery. For SSE technology to become a reality though, it must be scalable and financially feasible. Therefore, this thesis aids to bridge the gap between laboratory studies and commercialization by examining the financial feasibility of adopting this technology for a hypothetical battery manufacturing plant. In doing this, I develop a model of the incremental net cash flows, and subsequently the Net Present Value (NPV), from such an enterprise. If the present value of future cash flows from the enterprise are anticipated to be greater than the investment costs, the NPV is positive and the investment in this new technology would be considered instantaneously value enhancing and thus financially feasible. However, future cash flows are highly uncertain, which brings into question financial feasibility in a risky environment. To address the riskiness of future cash flows, I model three risk factors: the cost of raw materials, the potential growth in battery sales, as well as the potential mark-up (profit margin) of the SSE enterprise. Using Monte Carlo simulation (MCS) I model the incremental cash flows considering these risk factors and derive probabilistic assessments of NPV. My analysis suggests that despite the uncertainty caused by the volatility of raw metal prices, assumptions on price mark-up, and uncertain market demand for Li-ion batteries, there is a high probability of an investment in SSE batteries being financially feasible. Future research should consider the value of real options (optionality embedded in tangible investments) as traditional NPV analysis may underestimate the potential value of an investment in the presence of uncertain cash flows, especially if management has the ability to respond to the uncertainty.

ContributorsFonseca, Nathan (Author) / Manfredo, Mark (Thesis director) / Kannan, Arunachala Mada (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.

ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

After the wind tunnels in the SIM building and Innovation Hub were donated or lost, Dr. Rajadas requested a new wind tunnel be designed, developed, and fabricated using facilities and resources available on ASU Polytech. Over 6 months, a single student was tasked with running the CAD modeling process, undergoing

After the wind tunnels in the SIM building and Innovation Hub were donated or lost, Dr. Rajadas requested a new wind tunnel be designed, developed, and fabricated using facilities and resources available on ASU Polytech. Over 6 months, a single student was tasked with running the CAD modeling process, undergoing the revision stages, and welding/fabricating the tunnel by the end of Fall 2021.

ContributorsAcevedo, Rodrigo (Author, Co-author) / Rajadas, John (Thesis director) / Nam, Changho (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
165073-Thumbnail Image.png
Description

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s overall assessment of health and well-being. The thesis sought to fill the gap that prevents data collection of a female entire sexual response from initial arousal to final orgasm.

ContributorsDirks, Jessica (Author) / Ralston, Laurie (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Human Systems Engineering (Contributor)
Created2022-05
Description
The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with

The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with ADHD. Additionally females with ADHD are typically underdiagnosed and therefore go untreated for their ADHD. Females with ADHD show more emotional problems and comorbid internalizing disorders than males with ADHD show.
ContributorsEisenberg, Deborah (Author) / Meloy, Elizabeth (Thesis director) / Ocampo-Hoogasian, Rachel (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor)
Created2022-05
164819-Thumbnail Image.png
Description
Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these

Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these same issues. There are three distinct areas of epoxy resin casting influenced by each of these manufacturing factors, the material used to create molds, the air process applied to minimize defects, and resin demold time. This investigation was designed to determine the impact the three factors of manufacturing production have on the casting epoxy resin. Each category had numerous tests conducted to determine the best combination of production in terms of low cost, high quality, and high levels of repeatability. Ultimately, the best combination was the use of a platinum silicone called Mold Star 15, a pressure chamber, and an epoxy resin with a 12-hour cure time, called Amazing Resin. The final cost to create 100 products is $410.85. However, it should be noted for the highest quality dice, the utilization of a pressure chamber is required while the mold materials are interchangeable.
ContributorsFoster, Whitney (Author) / Delp, Deana (Thesis director) / Rajadas, John (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164969-Thumbnail Image.png
Description

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills through play. Hacking toys is helpful because toys that come with AT switches are often significantly more expensive than their unadapted counterparts. Toy hacks are also an opportunity to teach and practice engineering skills such as soldering and technical problem solving. Many resources are available online to assist makers with hosting toy hacks, but most of them lack information on holding the event. To fill this gap, the authors created a toy hack guide website, drawing from experience hosting two toy hacks. It walks users through steps like choosing the size of the event, the materials that need to be purchased, and connects them to other existing resources. In the future, it will be used to help people host more successful toy hacks.

ContributorsBushroe, Isabella (Author) / Koehl, Bridget (Co-author) / Frank, Daniel (Thesis director) / Brunhaver, Samantha (Committee member) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / Engineering Programs (Contributor)
Created2022-05