Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

147753-Thumbnail Image.png
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsDowney, Matthew Evan (Co-author) / Macias, Jose (Co-author) / Goldenberg, Edward (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth correction and Stereo disparity matching, combined with stronger match filtering, to improve the accuracy and reliability of VO estimations. The study utilizes a dataset consisting of a sequence of image frames, ground truth position data, and a range of feature detection, description, and matching techniques. Results indicate that the proposed approach significantly improves the accuracy of VO estimations, providing a valuable contribution to the development of reliable and safe autonomous navigation systems. The proposed method consists of two main components: (1) an advanced disparity matching algorithm to obtain more accurate and robust disparity estimations, and (2) a LIDAR depth correction module that employs a sensor fusion approach to refine the depth information generated by LIDAR sensors. The LIDAR depth correction module combines data from multiple sensors, including LIDAR, camera, and inertial measurement unit (IMU), to produce a more accurate depth estimation. The performance of the proposed approach is evaluated using real-world datasets and benchmark visual odometry challenges. Results demonstrate that the proposed method significantly improves the accuracy and robustness of visual odometry, leading to better localization and navigation performance for autonomous vehicles. This research contributes to the ongoing development of autonomous vehicle technology by addressing critical challenges in visual odometry and offering a practical solution for more accurate and reliable self-localization

ContributorsThanga Raj, Tilak Raj (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Engineering Programs (Contributor)
Created2023-05
132015-Thumbnail Image.png
Description
The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used

The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used to improve functional outcomes in the gait rehabilitation process. The ankle push-off phase of an individual’s gait is vital to their ability to walk and propel themselves forward. During the ankle push-off phase of walking, plantar flexors are required to providing a large amount of force to power the heel off the ground.

The purpose of this project is to improve upon the passive ankle foot orthosis originally designed in the ASU’s Robotics and Intelligent Systems Laboratory (RISE Lab). This device utilizes springs positioned parallel to the user’s Achilles tendon which store energy to be released during the push off phase of the user’s gait cycle. Goals of the project are to improve the speed and reliability of the ratchet and pawl mechanism, design the device to fit a wider range of shoe sizes, and reduce the overall mass and size of the device. The resulting system is semi-passive and only utilizes a single solenoid to unlock the ratcheting mechanism when the spring’s potential force is required. The device created also utilizes constant force springs rather than traditional linear springs which allows for a more predictable level of force. A healthy user tested the device on a treadmill and surface electromyography (sEMG) sensors were placed on the user’s plantar flexor muscles to monitor potential reductions in muscular activity resulting from the assistance provided by the AFO device. The data demonstrates the robotic shoe was able to assist during the heel-off stage and reduced activation in the plantar flexor muscles was evident from the EMG data collected. As this is an ongoing research project, this thesis will also recommend possible design upgrades and changes to be made to the device in the future. These upgrades include utilizing a carbon fiber or lightweight plastic frame such as many of the traditional ankle foot-orthosis sold today and introducing a system to regulate the amount of spring force applied as a function of the force required at specific times of the heel off gait phase.
ContributorsSchaller, Marcus Frank (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131372-Thumbnail Image.png
Description
In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain

In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain some of the types of algorithms that can be applied to these aerial systems, why the constraints for these algorithms exist, and what could be done to mitigate them. This paper provides a summary of the processes involved in a popular filter-based tracking algorithm called MOSSE (Minimum Output Sum of Squared Error) and a particular implementation of SLAM (Simultaneous Localization and Mapping) called LSD SLAM.
ContributorsVan Hazel, Colton (Author) / Zhang, Wenlong (Thesis director) / Yang, Yezhou (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131400-Thumbnail Image.png
Description
For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.
ContributorsSeidel, Sam (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132547-Thumbnail Image.png
Description
Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road and parking spaces makes bicycles a good choice for transportation

Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road and parking spaces makes bicycles a good choice for transportation over short distances in urban areas. Bicycle riding has also been shown to improve overall health and increase life expectancy. However, riding a bicycle may be inconvenient or impossible for persons with disabilities due to the complex and coordinated nature of the task. Automated bicycles provide an interesting area of study for human-robot interaction, due to the number of contact points between the rider and the bicycle. The goal of the Smart Bike project is to provide a platform for future study of the physical interaction between a semi-autonomous bicycle robot and a human rider, with possible applications in rehabilitation and autonomous vehicle research.

This thesis presents the development of two balance control systems, which utilize actively controlled steering and a control moment gyroscope to stabilize the bicycle at high and low speeds. These systems may also be used to introduce disturbances, which can be useful for studying human reactions. The effectiveness of the steering balance control system is verified through testing with a PID controller in an outdoor environment. Also presented is the development of a force sensitive bicycle seat which provides feedback used to estimate the pose of the rider on the bicycle. The relationship between seat force distribution is demonstrated with a motion capture experiment. A corresponding software system is developed for balance control and sensor integration, with inputs from the rider, the internal balance and steering controller, and a remote operator.
ContributorsBush, Jonathan Ernest (Author) / Zhang, Wenlong (Thesis director) / Sandy, Douglas (Committee member) / Software Engineering (Contributor, Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05