Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131809-Thumbnail Image.png
Description
Engineering is an interdisciplinary field that requires extensive knowledge of STEM topics. The ability to apply mathematical concepts in engineering applications is no exception. Some undergraduate engineering students struggle with early course work typically entrenched in learning underlying mathematics. Students are often able to understand engineering principles, but are unable

Engineering is an interdisciplinary field that requires extensive knowledge of STEM topics. The ability to apply mathematical concepts in engineering applications is no exception. Some undergraduate engineering students struggle with early course work typically entrenched in learning underlying mathematics. Students are often able to understand engineering principles, but are unable to understand the mathematics behind the principles. This is due to students finding it difficult to make connections and apply mathematics outside of routine computational calculations.

Traditional instruction of mathematics has relied predominantly on teacher-centered pedagogies or passive learning (e.g lecture). Active learning differs in that it includes student-centered approaches and has been shown to increase student understanding in STEM courses.

The purpose of this study is to explore and discover what elements lead to good problem-solving tasks in an active learning mathematics focused classroom. Elements were determined using interviews with mathematics instructors that currently use active learning techniques and problem-solving tasks in their classrooms. Instructors were asked to describe the process they use for creating tasks. An instructor’s guidebook will be created and made available based on the findings and discoveries of this study on how to create problem-solving tasks.

The three main categories of emergent themes were task structure, task development, and problem-solving environment. The emergent themes in task structure are useful for understanding what elements make a good problem-solving task. Knowing the particular challenges previous instructors faced in creating an active-learning environment will help instructors avoid common pitfalls. These elements of creating a problem-solving environment will also be included in the guidebook as a class cannot have good problem-solving tasks without an environment conducive to active learning.
ContributorsRossi, Nathaniel (Author) / Carberry, Adam (Thesis director) / Adamson, Scott (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05