Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

136726-Thumbnail Image.png
DescriptionThis is a project to create an electric field sensing system which is fully portable. This system should provide accurate electric field readings from transmission lines allowing abstraction to find the voltage on the transmission line.
ContributorsScowen, Kegan (Co-author) / Vora, Sandeep (Co-author) / Ye, Weidong (Co-author) / Sciacca, Jacob (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05
136475-Thumbnail Image.png
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136707-Thumbnail Image.png
Description
Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned.

Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned. Modern technological advancements made it possible to isolate beta emitting radioisotopes properly and achieve better energy conversion efficiencies which revived the topic of betavoltaics. This research project has studied state-of-the-art pacemakers and modern radioactive power sources in order to determine if modern pacemakers can be safely nuclear powered and if that is a reasonable combination.
ContributorsAwad, Al-Homam Abdualrahman (Author) / Holbert, Keith (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136341-Thumbnail Image.png
Description
Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket.

Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket. D-dot sensors, which detect changes in electric flux, were chosen for electric field sensing, and a single D-dot sensor in combination with a lock-in amplifier was used to detect individuals passing through an oscillating electric field. This was then developed into a 1 x 16 array of D-dot sensors used to image the field generated by two parallel wires. After the fabrication of a two-dimensional array, it was discovered that commercial field effect transistors did not have a high enough off-resistance to isolate the sensor form the column line. Three alternative solutions were proposed. The first was a one-dimensional array combined with a mechanical stepper to move the array across the E-field pattern. The second was a 1 x 16 strip detector combined with the techniques of computed tomography to reconstruct the image of the field. Such techniques include filtered back projection and algebraic iterative reconstruction (AIR). Lastly, an array of D-dot sensors was fabricated on a flexible substrate, enabled by the high off-resistance of the thin film transistors produced by the FEDC. The research on magnetic field imaging began with a feasibility study of three different types of magnetic field sensors: planar spiral inductors, Hall effect sensors, and giant magnetoresistance (GMR). An experimental array of these sensors was designed and fabricated, and the sensors were used to image the fringe fields of a Helmholtz coil. Furthermore, combining the inductors with the other two types of sensors resulted in three-dimensional sensors. From these measurements, it was determined that planar spiral inductors and Hall effect sensors are best suited for future imaging arrays.
ContributorsLarsen, Brett William (Author) / Allee, David (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136219-Thumbnail Image.png
Description
This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV

This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV to carry and mobilize the electronic parts. The system should be able to sense magnetic fields from power transmission lines, enabling the determination of whether or not current is running through the power line.
ContributorsTheoharatos, Dimitrios (Co-author) / Brazones, Ryan (Co-author) / Pagaduan, Patrick (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136362-Thumbnail Image.png
Description
Foveal sensors employ a small region of high acuity (the foveal region) surrounded by a periphery of lesser acuity. Consequently, the output map that describes their sensory acuity is nonlinear, rendering the vast corpus of linear system theory inapplicable immediately to the state estimation of a target being tracked by

Foveal sensors employ a small region of high acuity (the foveal region) surrounded by a periphery of lesser acuity. Consequently, the output map that describes their sensory acuity is nonlinear, rendering the vast corpus of linear system theory inapplicable immediately to the state estimation of a target being tracked by such a sensor. This thesis treats the adaptation of the Kalman filter, an iterative optimal estimator for linear-Gaussian dynamical systems, to enable its application to the nonlinear problem of foveal sensing. Results of simulations conducted to evaluate the effectiveness of this algorithm in tracking a target are presented, culminating in successful tracking for motion in two dimensions.
Created2015-05
136385-Thumbnail Image.png
Description
The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an

The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an extremely cost effective way. Higher integration leads to electronics with increased functionality and a smaller finished product. The MESFETs are designed in-house by the research group led by Dr. Trevor Thornton. The layouts are then sent to multi-project wafer (MPW) integrated circuit foundry companies, such as the Metal Oxide Semiconductor Implementation Service (MOSIS) to be fabricated. Once returned, the electrical characteristics of the devices are measured. The MESFET has been implemented in various applications by the research group, including the low dropout linear regulator (LDO) and RF power amplifier. An advantage of the MESFET is that it can function in extreme environments such as space, allowing for complex electrical systems to continue functioning properly where traditional transistors would fail.
ContributorsKam, Jason (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05