Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 302
Filtering by

Clear all filters

133351-Thumbnail Image.png
Description
The purpose of this research is to explore Latina/o students' involvement at Arizona State University West and how it affects their sense of belonging, and thereby, their retention. I operationalize a "sense of belonging" as being able to express and feel comfortable with one's ethnic identity in the context of

The purpose of this research is to explore Latina/o students' involvement at Arizona State University West and how it affects their sense of belonging, and thereby, their retention. I operationalize a "sense of belonging" as being able to express and feel comfortable with one's ethnic identity in the context of a higher education institution (Hurtado, 1997). I operationalize student involvement by the extent to which an individual student is devoted to their academic experience, invests time studying on campus, participates in student organizations, and interacts with faculty and their peers (Astin, 1984). I draw from Astin's theory of student involvement and Hurtado's sense of belonging as a base for this inquiry because they are critical components to understanding retention among the Latino/a community at Arizona State University West.
ContributorsGuerra, Luis D. (Author) / Cuadraz, Gloria (Thesis director) / Aska, Cassandra (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131494-Thumbnail Image.png
Description
In today’s economy, advertisers understand that sex sells. The foundations of this concept, however, are influenced by patriarchal expectations that women are first and foremost sexual objects for men. Women are sold beauty and demeanor expectations for them to utilize when making themselves attractive for men and men are sold

In today’s economy, advertisers understand that sex sells. The foundations of this concept, however, are influenced by patriarchal expectations that women are first and foremost sexual objects for men. Women are sold beauty and demeanor expectations for them to utilize when making themselves attractive for men and men are sold the idea of beautiful, docile women. This dynamic perpetuates strict definitions of acceptable gender displays and reinforces socially permitted gendered behavior. As a society in the 21st century, we understand the damage of sexist ideals, but where we fall short is in the monitoring of channels that perpetuate and maintain those stereotypes and how affected the public really is by the male gaze, and lack of a female gaze, in media. In this paper, I search for a female gaze, but in doing so recognize the inequalities inherent in yet another gendered practice of looking and instead steer the conversation towards personalized perspectives informed by an understanding of the dominant practice of looking and its inverse.

The primary perspective from which people are depicted in media today is shaped by the male gaze. The male gaze is comprised of patriarchal ideals and relies on the understanding that the spectator or viewer is a standard human being, which heteronormativity tells us is a man. From this perspective, the scope of visual representations of men and women in media has been molded after the hierarchized gender displays within which masculinity has primacy over femininity. By presenting a limited spectrum of behavior acceptable for men and women, the media hegemonically manipulates the social constructs of gender and gendered behavior across all levels of society.

This honors thesis applies semiotic and feminist methodologies to engage visual forms of media through art, film, and social media to challenge the social constructs of gender perpetuated and reinforced by dated stereotypes of gender and gendered behavior. First, the theoretical foundation will provide a framework for semiotic and feminist analysis of visual representations of gender in media. Then, I will present data representing the real-world impact that this social construction of gender has on adolescents in America using The State of Gender Equality for U.S. Adolescents, published by Plan International Inc. I will then bring together the explicated methodologies and evidential data alongside my own experiences as a female consumer of visual media to reveal alternative practices of looking that do not revolve around patriarchal norms, looking for a female gaze. In doing so, I hope to present recourse in the face of persistent use of sexist imagery across all levels of our culture and every medium of visual self-expression by providing tools that can be used to interrogate gendered perceptions and inform self-examination in pursuit of a feminist practice of looking.
ContributorsPreston, Phoebe Jane (Author) / Gaffney, Cynthia (Thesis director) / Kirsch, Sharon (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial neural networks and neural activity in the brain. This project consists of three short pieces, each exploring these concept in different ways.
ContributorsKarpur, Ajay (Author) / Suzuki, Kotoka (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135398-Thumbnail Image.png
Description
This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both

This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both graphically and audibly within a spatial, three-dimensional context. The three-dimensional sound perception is driven primarily by a binaural implementation of a higher order ambisonics framework while graphics and other data are processed by openFrameworks, an interactive media framework for C++. Within the application, sound sources have been given behavioral functions such as flocking or orbit patterns, animating their positions within the environment. The author will summarize the design process and rationale for creating such a system and the chosen approach to implement the software application. The paper will also provide background approaches to spatial audio, gesture and virtual reality embodiment, and future possibilities for the existing project.
ContributorsBurnett, Garrett (Author) / Paine, Garth (Thesis director) / Pavlic, Theodore (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05