Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161075-Thumbnail Image.png
Description

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to controlled output variables. The effect of changes in various parameters as well as other aspects of the system are examined. Methods for controller design based on the derived transfer functions are discussed. This will include the discussion of control of the final descent and landing of the rocket. Lastly, there is a brief discussion about both the successes and limitations of the model analyzed.

ContributorsWarner, Adin (Author) / Rodriguez, Armando (Thesis director) / Shafique, Ashfaque (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2021-12
132326-Thumbnail Image.png
Description
The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using

The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using LQR methodology. A prototype was then built and tested to exhibit desired reference command following and disturbance attenuation.
ContributorsKapron, Mark Andrew (Author) / Rodriguez, Armando (Thesis director) / Artemiadis, Panagiotis (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132094-Thumbnail Image.png
Description
With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

The work presents the nonlinear equations of motion of a quadcopter. This includes the translational and rotational equations of motion, as well as an analysis of the nonlinear actuator dynamics. The work then analyzes the static properties of a quadcopter in forward flight equilibrium and shows how static properties change as physical properties of the vehicle are varied. Next, the dynamics of forward flight are linearized, and a dynamic analysis is provided.

After dynamic analysis, the work shows detailed hierarchical control system design trade studies, which includes attitude and translational inner-outer loop control. Among other designs, the following are presented: PD control, proportional control, pole-placement control. Each of these control architectures are employed for the inner loops and outer loops. The work also analyzes linear versus nonlinear simulation performance of a quadcopter, specifically for a step x-axis reference command. It is found that the nonlinear dynamics of the actuator cause significant discrepancy between linear and nonlinear simulation.

Finally, this thesis establishes directions for future graduate research. This includes hardware design, as well as moving toward design of a highly-maneuverable thrust-vectoring quadrotor which will be the focus of the proposed graduate PhD research. In summary, this thesis provides the beginning of a cohesive framework to model, analyze, control, and design quadcopters. It also lays the groundwork for graduate research and beyond.
ContributorsWallace, Brent (Author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12