Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

135736-Thumbnail Image.png
Description
The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem

The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem with doing both on the same path is that the transmit signal is usually much stronger in power compared to the received signal. The transmit signal has echoes and leakages that cause self-interference, preventing the received signal from being properly obtained. The solution developed in this project is the BIST component, which will help calculate the functional gain and phase offset of the interference signal and subtract it from the pathway so that the received signal remains. The functions of the proposed circuit board can be modeled in Matlab, where an emulation code generates a random, realistic functional gain and delay for the interference. From the generated values, the BIST for STAR was simulated to output what the measurements would be given the strength of the input signal and a controlled delay. The original Matlab code models an ideal environment directly recalculating the functional gain and phase from the given measurements in a second Matlab script. The actual product will not be ideal; a possible source of error to be considered is the effect of thermal noise. To observe the effect of noise on the BIST for STAR's performance, the Matlab code was expanded upon to include a component for thermal noise, and a method of analyzing the results of the board.
ContributorsLiu, Jennifer Yuan (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135766-Thumbnail Image.png
Description
The capstone portion of this project was to use the established STaR antennas and add a Built in Self-Test system to ensure the quality of the signals being received. This part of the project required a MatLab simulation to be built, a layout created, and a PCB designed for fabrication.

The capstone portion of this project was to use the established STaR antennas and add a Built in Self-Test system to ensure the quality of the signals being received. This part of the project required a MatLab simulation to be built, a layout created, and a PCB designed for fabrication. In theory, the test BiST unit will allow the gain and delay of the transmitted signal and then cancel out unneeded interference for the received signal. However, this design required multiple paths to maintain the same lengths to keep the signals in phase for comparison. The purpose of this thesis is to show the potential drop-offs of the quality of the signals from being out of phase due to the wires that should be similar, being off by a certain percentage. This project will calculate the theoretical delay of all wires being out of sync and then add this delay to the established MatLab simulation. This report will show the relationship between the error of the received variables and what the actual generated values. And, the last part of the document will demonstrate the simulation by creating a signal and comparing it to its received counterpart. The end result of the study showed that the percent error between what is seen and what is expected is near insignificant and, hence, not an issue with regards to the quality of the project.
ContributorsSomers, Tyler Scott (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135767-Thumbnail Image.png
Description
The purpose of the Simultaneous Transmit and Receive Antenna project is to design a test circuit that will allow us to use an antenna to both send out and receive a signal at the same time on the same frequency. The test circuit will generate DC voltage levels that we

The purpose of the Simultaneous Transmit and Receive Antenna project is to design a test circuit that will allow us to use an antenna to both send out and receive a signal at the same time on the same frequency. The test circuit will generate DC voltage levels that we can use to solve for the gain and delay of the transmit interference, so we will then be able to cancel out the unwanted signal from the received signal. With a theoretically perfect setup, the transmitted signal will be able to be completely isolated from the received signal, leaving us with only what we want at the output. In practice, however, this is not the case. There are many variables that will affect the integrity of the DC output of the test signal. As the output voltage level deviates from its theoretical perfect measurement, the precision to which we are able to solve for the gain and delay values decreases. The focus of this study is to estimate the effect of using a digital measurement tool to measure the output of the test circuit. Assuming a voltmeter with 1 volt full range, simulations were run using measurements stored at different bit resolutions, from 8-bit storage up to 16-bit storage. Since the physical hardware for the Simultaneous Transmit and Receive test circuit is not currently available, these tests were performed with an edited version of the Matlab simulation created for the Senior Design project. The simulation was run 2000 times over each bit resolution to get a wide range of generated values, then the error from each run was analyzed to come to a conclusion on the effect of the digital measurement on the design. The results of these simulations as well as further details of the project and testing are described inside this document.
ContributorsKral, Brandon Michael (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132153-Thumbnail Image.png
Description
This paper presents work that was done to develop an energy-efficient electoral and frame count system for underwater sea turtle image and video recognition using convolutional neural networks, deep learning framework, and the Python programming language. An underwater sea turtle image recognition program is essential to protect turtles from the

This paper presents work that was done to develop an energy-efficient electoral and frame count system for underwater sea turtle image and video recognition using convolutional neural networks, deep learning framework, and the Python programming language. An underwater sea turtle image recognition program is essential to protect turtles from the threat of bycatch - sea turtles are accidentally caught when fishermen aim for a different type of underwater species. This underwater image recognition system is used to detect the presence of sea turtles, then different kinds of acoustic and light stimuli are used to warn the turtles of approaching danger to reduce bycatch. This image detection system will be placed on a fishing boat to run on a machine at all times (24 hours and 7 days a week). A live video capture from a low-power underwater camera that is attached to the boat will be sent to the image detection system on the machine to analyze the presence of sea turtles in each frame of the video. To lower the computational time and energy of the machine, an energy-efficient electoral and frame count system is implemented on this image detection system.
ContributorsDeng, Enhong (Author) / Ozev, Sule (Thesis director) / Blain Christen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05