Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

132838-Thumbnail Image.png
Description
The purpose of this research is to optically characterize germanium-based chalcogenide thin films and evaluate how their properties change when the composition is altered. The composition changes based on if the chalcogenide contains selenium or sulfur, if the film is 60 nanometers or 200 nanometers, and if the film is

The purpose of this research is to optically characterize germanium-based chalcogenide thin films and evaluate how their properties change when the composition is altered. The composition changes based on if the chalcogenide contains selenium or sulfur, if the film is 60 nanometers or 200 nanometers, and if the film is doped with silver (ranging from 0 nanometers to 30 nanometers). These amorphous germanium-chalcogenide thin films exhibit interesting properties when doped with silver, such as transporting ions within the film in addition to electron transport. Using optical characterization techniques such as UV-Vis spectroscopy, profilometry, and ellipsometry, parameters that describe the optical characteristics are found, including the absorption coefficient, refractive index, optical band gap energy, and information on the density of states. This research concludes that as silver content within the film increases, the optical bandgap energy decreases—this is a consistent trend in existing literature. Having a better understanding of the materials’ physical properties will be useful to aid in the creation of microsystems based on these materials by selecting optimal composition and growth conditions. Important applications using these materials are currently being researched, including variable capacitor devices relying on the ionic conductor behavior these materials display. The optical properties like the absorption coefficient and the optical bandgap energy are invaluable in designing these applications effectively.
ContributorsRicks, Amberly Frances (Author) / Gonzalez Velo, Yago (Thesis director) / Kozicki, Michael (Committee member) / Holman, Zachary (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130920-Thumbnail Image.png
Description
The purpose of this research is to optically characterize the band gaps of sulfide-based chalcogenides and copper oxide thin films. The analysis on the copper oxide thin films will view the effects of various annealing temperatures and the analysis of the chalcogenides will view the effects of silver doping on

The purpose of this research is to optically characterize the band gaps of sulfide-based chalcogenides and copper oxide thin films. The analysis on the copper oxide thin films will view the effects of various annealing temperatures and the analysis of the chalcogenides will view the effects of silver doping on the thin films. Using UV-Vis spectroscopy, parameters such as the absorption coefficient and determined which then provide details on the optical band gaps of these various semiconductors. With a better understanding of the bandgap of these materials, the behavior can be better predicted in fields of nanoionics and photonics.
ContributorsArora, Rajat Anmol (Author) / Gonzalez Velo, Yago (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12