Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133725-Thumbnail Image.png
Description
Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.
ContributorsPeplinski, Jacob Scott (Author) / Berisha, Visar (Thesis director) / Liss, Julie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133622-Thumbnail Image.png
Description
The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs

The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs involved testing refresh rates, field of view, distance the sensors could detect, reflectivity, and power of the emitters. The four LiDARs examined in this study were the Scanse, RPLIDAR A2, LeddarTech Vu8, and LeddarTech M16. Of these low cost LiDAR options we find the two best options for use in affordable autonomous vehicle sensors to be the RPLIDAR A2 and the LeddarTech M16.
ContributorsMurphy, Thomas Joseph (Co-author) / Gamal, Eltohamy (Co-author) / Yu, Hongbin (Thesis director) / Houghton, Todd (Committee member) / Electrical Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133638-Thumbnail Image.png
Description
The world of role playing games, or RPGs, is a complex, ever changing balance of egos, luck, skill, and fun. It is "always on the verge of destruction… a movement between order and chaos” (Sicart 2014, 3). This paper looks at the creation and implementation of one basic Generic Universal

The world of role playing games, or RPGs, is a complex, ever changing balance of egos, luck, skill, and fun. It is "always on the verge of destruction… a movement between order and chaos” (Sicart 2014, 3). This paper looks at the creation and implementation of one basic Generic Universal Role Playing System (GURPS) story skeleton, and how five groups of five to seven players created five extremely diverse, rich stories. A jointly told story is the sum of the experiences and interactions of the storytellers. The Game Master creates an ever-evolving story based on their own ideas and characters, and influenced by the choices of the Player Characters. Likewise, the Player Characters react and adapt to scenarios given to them by the Game Master, steering the story in subtler, but no less influential ways. Both the Game Master and the Player Characters are influenced in their decisions by out of game rivalries and the interplay of the different roles each player takes on. My research sought to explore how and why a jointly told narrative changes from the original source material. What change agents are due to the power of the Game Master? How do PCs most effectively change their story? To what extent does the story depend on the out-of-game interactions that are shaped by the real world? In this paper I will argue that agônistic play or the lack thereof is the driving force behind joint storytelling due to both the conflict within one player between player and character, and the conflict inherent in bringing multiple overlapping but incongruous social realities together to create a separate shared social reality.
ContributorsAbraham, Rebecca (Author) / Loebenberg, Abby (Thesis director) / Ingram-Waters, Mary (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
133639-Thumbnail Image.png
Description
Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are

Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are designed for the end of life. Throughout their lifetime, solar arrays can degrade in power producing capabilities anywhere from 20% to 50%. Because there is such a drastic difference in the beginning and end of life power production, and because they cannot be reconfigured, a new design has been found necessary in order to increase power production. Reconfiguration allows the solar arrays to achieve maximum power producing capabilities at both the beginning and end of their lives. With the potential to increase power production by 50%, the reconfiguration design consists of a switching network to be able to utilize any combination of cells. The design for reconfiguration must meet the power requirements of the solar array. This thesis will explore different designs for reconfiguration, as well as possible switches for implementation. It will also review other methods to increase power production, as well as discuss future work in this field.
ContributorsJohnson, Everett Hope (Author) / Kitchen, Jennifer (Thesis director) / Ozev, Sule (Committee member) / School of International Letters and Cultures (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133873-Thumbnail Image.png
Description
This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water

This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water contamination, destruction of the the Amazon rainforests. Natural resources, such as water - it takes one thousand gallons of water to produce one gallon of milk - are being over consumed. Land is being cleared of trees at a massive scale in the Amazon to make more room for land to raise livestock and grow its feed. Following the stories and experiences of several ASU students and other community members, the documentary highlights this connection between food and its effects on the environment and what people can do to make a difference.
ContributorsKoka, Vaishnavi (Author) / Barca, Lisa (Thesis director) / Meloy, Elizabeth (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
A bicycle tour is an unusual thing, one that often defies the expectations of the first-time touring cyclist. In this report, the experience of touring cycling is examined in two parts: a narrative documenting the author's tour down the Pacific Coast, and a reflective work that examines the journey and

A bicycle tour is an unusual thing, one that often defies the expectations of the first-time touring cyclist. In this report, the experience of touring cycling is examined in two parts: a narrative documenting the author's tour down the Pacific Coast, and a reflective work that examines the journey and the major themes which persist throughout. In examining the trip, two major dichotomies arose as themes. The first major dichotomy is found in the expectation of a solitary experience for one who is touring solo. In reality, tours are often built on the goodwill of others in the cycling community. On this particular tour, a website called Warmshowers was central to this point. By offering lodging to tired touring cyclists who would otherwise camp alone, this website serves to bring the cycling community together, and allows for connections that would otherwise never exist to be formed. However, it is true that much of a solo tour is, in fact, spent in solitude. This allows a cyclist long periods for self-reflection and meditation, an opportunity to strengthen one's connection with oneself and the natural world around them. The second is a contrast between the planning that goes into embarking on a long trip and the entropy and randomness that inevitably causes the experience to wildly differ from said plan. When the unexpected occurs, there are two options: to reject the unknown and cling to the framework one sets out for themselves, or to embrace the unexpected and see where it takes you. Often, diverting from the plan can allow for new and exciting experiences. However, there is also value to the framework and stability afforded by adhering to a plan. Through these experiences and more, a bicycle tour changes the way one looks at the world.
ContributorsReid, Evan Calderwood (Author) / Fette, Donald (Thesis director) / Loebenberg, Abby (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133550-Thumbnail Image.png
Description
Aerogels are among the best known thermally insulating materials due their high porosities (>90%). This, in conjunction with their high transparency make them ideal candidates for highly insulating window coatings. However, current state of the art techniques involve time-consuming drying steps and poor mechanical robustness, severely limiting their wide-scale adaptation.

Aerogels are among the best known thermally insulating materials due their high porosities (>90%). This, in conjunction with their high transparency make them ideal candidates for highly insulating window coatings. However, current state of the art techniques involve time-consuming drying steps and poor mechanical robustness, severely limiting their wide-scale adaptation. By using a dry aerosol impaction process, synthesizing nanoparticles in a plasma, upstream of a slit-shaped nozzle and impacting these particles onto a substrate below, a novel way for producing mesoporous silica aerogels is shown. This removes the need for solution-based processing, improving the potential for high throughput. Thick (~100um), 90% mesoporous silica has been characterized showing low effective thermal conductivity (~0.02 W/mK) and high transparency (>90%). The morphology of these coatings were analyzed showing tight pore distributions. Film adhesion and stress have shown themselves to be major hurdles during the development of these coatings and will be the focus of future work.
ContributorsRodkey, Nathan Jacques (Author) / Holman, Zachary (Thesis director) / Bryan, Jonathan (Committee member) / Materials Science and Engineering Program (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05