Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 236
Filtering by

Clear all filters

133346-Thumbnail Image.png
Description
The advertising agency, in its variety of forms, is one of the most powerful forces in the modern world. Its products are seen globally through various multimedia outlets and they strongly impact culture and economy. Since its conception in 1843 by Volney Palmer, the advertising agency has evolved into the

The advertising agency, in its variety of forms, is one of the most powerful forces in the modern world. Its products are seen globally through various multimedia outlets and they strongly impact culture and economy. Since its conception in 1843 by Volney Palmer, the advertising agency has evolved into the recognizable—and unrecognizable—firms scattered around the world today. In the United States alone, there are roughly 13.4 thousand agencies, many of which also have branches in other countries. The evolution of the modern advertising agency coincided with, and even preceded, some of the major inflection points in history. Understanding how and why changes in advertising agencies affected these inflection points provides a glimpse of understanding into the relationship between advertising, business, and societal values.

In the pages ahead we will explore the future of the advertising industry. We will analyze our research to uncover the underlying trends pointing towards what is to come and work to apply those explanations to our understanding of advertising in the future.
ContributorsHarris, Chase (Co-author) / Potthoff, Zachary (Co-author) / Gray, Nancy (Thesis director) / Samper, Adriana (Committee member) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134175-Thumbnail Image.png
Description
Ringside is a digital publication that looks at how the independent professional wrestling organization, the Arizona Wrestling Federation (AWF) has been able to succeed, due to the growth and development of the World Wrestling Entertainment (WWE), in to more than just a sports entertainment company. The purpose of designing an

Ringside is a digital publication that looks at how the independent professional wrestling organization, the Arizona Wrestling Federation (AWF) has been able to succeed, due to the growth and development of the World Wrestling Entertainment (WWE), in to more than just a sports entertainment company. The purpose of designing an online publication is to inform as well as to serve as a template for how a company like the AWF can create a digital publication. The narrative of the publication follows how the WWE always has been at the forefront of the professional wrestling industry and recently, it has not only crossed over into mainstream sports journalism, also expanded its presence in almost every type of media, including television, online and even toys. Due to WWE's growing influence and fan following, independent companies like the AWF are capitalizing on WWE's success by replicating the show's business model on a smaller scale. This project also serves as a study in design and user interactivity. The link to the publication is bit.ly/RingsideCreativeProject
Created2017-12
134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial neural networks and neural activity in the brain. This project consists of three short pieces, each exploring these concept in different ways.
ContributorsKarpur, Ajay (Author) / Suzuki, Kotoka (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135421-Thumbnail Image.png
Description
Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord. Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord.  The severity of multiple sclerosis varies based on

Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord. Multiple sclerosis is a neurological disease that attacks the nerves in the central nervous system of the brain and spinal cord.  The severity of multiple sclerosis varies based on the each person and the progression of the disease. There are roughly 2.5 million people that suffer from this disease that life is changed dramatically from being diagnosed with no main way to ease into adjusting to a new lifestyle. The increase of people that are diagnosed with multiple sclerosis, and with a majority of those people being diagnosed in their early 20’s, there is a need for an application that will help patients manage their health. Multiple sclerosis leads to a lifestyle change, which includes various treatment options as well as routine doctor appointments.  The creation of the myMS Specialist application will allow patients with multiple sclerosis to live a more comfortable lifestyle while they easily track and manage their health through their mobile devices. Our application has seven components that all play an important role in adjusting to the new everyday lifestyle for a patient with multiple sclerosis. All seven components are largely intertwined with each other to help patients realize patterns in their diet, sleep, exercise and the weather that causes their symptoms to worsen. Our application not only connects to a patient’s doctor so that there is full access of information at all time to the doctor but provides beneficial research to help further the understanding of multiple sclerosis. This application will be marketed and available for purchase to not only patients but doctors. It is our goal to lessen the burden of a new lifestyle to a patient, create constant communication with one’s doctor and provide beneficial data to researchers.
ContributorsSaenz, Devon (Co-author) / Peterson, Tyler (Co-author) / Chomina-Chavez, Aram (Thesis director) / Staats, Cody (Committee member) / W. P. Carey School of Business (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Accountancy (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05