Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

133000-Thumbnail Image.png
Description
The rise in the number of antibiotic-resistant bacteria, due in part to the widespread use of antibiotics, has spawned new technological approaches for identifying novel antimicrobials with narrow specificity. Current antibiotic treatment regimens and anti-tuberculosis drugs are not effective at treating Mycobacterium abscessus; therefore, antimicrobial peptides have gained prominence as

The rise in the number of antibiotic-resistant bacteria, due in part to the widespread use of antibiotics, has spawned new technological approaches for identifying novel antimicrobials with narrow specificity. Current antibiotic treatment regimens and anti-tuberculosis drugs are not effective at treating Mycobacterium abscessus; therefore, antimicrobial peptides have gained prominence as alternative antimicrobials due to their specificity towards anionic bacterial membranes, rapid action, and inability for the bacteria to develop resistance by acting against the cell membrane. Our group has developed a high-density peptide microarray consisting of 125,000 random synthetic peptides for rapid screening of antimicrobial peptides against M. abscessus. From the array screening, the peptides that interacted with the mycobacterial cell surface were synthesized and subsequent inhibitory, bactericidal, and toxicity assays were performed. Additionally, minimum inhibitory concentration assays were performed with these peptides against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in order to determine if inhibitory activity was observed against Gram-positive and Gram-negative bacteria. Six peptides, out of the 125,000 peptides screened, had inhibitory activity against M. abscessus and low toxicity (< 10%) against human red blood cells. One peptide also exhibited inhibitory activity against S. aureus and E. coli. To determine combination effects, antimicrobial synergy assays will be performed with the six peptides and clarithromycin
ContributorsIannuzo, Natalie (Author) / Haydel, Shelley E. (Thesis director) / Diehnelt, Chris W. (Committee member) / Bean, Heather D. (Committee member) / School of Life Sciences (Contributor, Contributor) / Economics Program in CLAS (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05