Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 121 - 124 of 124
Filtering by

Clear all filters

164633-Thumbnail Image.png
Description
The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of

The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of precision. This thesis measures the precision with which that system performs.
ContributorsBabic, Gregory (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Holl, Mark (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2022-05
165963-Thumbnail Image.png
Description

Electron Multiplying Charge Coupled Device (EMCCD) cameras are widely used for fluorescence microscopy experiments. However, the quantitative determination of biological parameters uniquely depends on characteristics of the unavoidably inhomogenous illumination profile as it gives rise to an image. It is therefore of interest to learn this inhomogenous illumination profiles that

Electron Multiplying Charge Coupled Device (EMCCD) cameras are widely used for fluorescence microscopy experiments. However, the quantitative determination of biological parameters uniquely depends on characteristics of the unavoidably inhomogenous illumination profile as it gives rise to an image. It is therefore of interest to learn this inhomogenous illumination profiles that can dramatically vary across images alongside the camera parameters though a detailed camera model. In this manuscript we create a detailed model to learn inhomogeneous illumination profiles as well as learn all associated camera parameters. We achieve this within a Bayesian paradigm allowing us to determine full distributions over the unknowns.

ContributorsBryan, Eric (Author) / Presse, Steve (Thesis director) / Fazel, Mohammed (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2022-05
Description

The classical double copy maps exact solutions of general relativity to exact solutions of U(1) Yang-Mills theory and suggests a hitherto unknown connection between gravity and gauge theory. In this thesis I study three problems using the Kerr-Schild and Weyl formulations of the classical double copy. Using the Kerr-Schild double

The classical double copy maps exact solutions of general relativity to exact solutions of U(1) Yang-Mills theory and suggests a hitherto unknown connection between gravity and gauge theory. In this thesis I study three problems using the Kerr-Schild and Weyl formulations of the classical double copy. Using the Kerr-Schild double copy, I analyze the single copy of a rotating nonsingular black hole and analyze its horizon structure to probe the relationship between the presence of horizons on the gravity side and the single copy field on the gauge theory side. In the second problem I describe the mapping between the surface gravity of static spherically symmetric black holes and the force on a test particle due to the single copy field of the black hole. I also describe potential routes to extending this map to rotating black holes. Finally, inspired by the extended Weyl double copy for spacetimes possessing sources, I reinterpret the single copy of the Taub- NUT metric as being comprised of two terms each being sourced by a separate parameter (the mass and the NUT charge).

ContributorsPezzelle, Max (Author) / Foy, Joseph (Thesis director) / Keeler, Cynthia (Committee member) / Manton, Tucker (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
Description
Time restricted eating (TRE) is an increasingly popular diet strategy that has shown promise for weight loss and improving metabolic health. The impact of TRE on bone health has not been extensively studied, and the goal of this experiment is to provide more insight into this subject. 32 10-week old

Time restricted eating (TRE) is an increasingly popular diet strategy that has shown promise for weight loss and improving metabolic health. The impact of TRE on bone health has not been extensively studied, and the goal of this experiment is to provide more insight into this subject. 32 10-week old female mice were randomly assigned to 4 groups (n = 8). These included low fat diet fed ad-libitum, low fat time restricted feeding (TRF), high fat diet fed ad-libitum, and high fat TRF. The mice adhered to these diets for 9 weeks, with the TRF groups having access to food for 8 hours per day until the sacrifice. At nine weeks, the TRF mice had significantly lowered body weight, improved body composition, and a lower fasting blood glucose. The TRF groups also experienced significant improvements in the trabecular bone density of the tibia, femur, and L3 vertebral body. This was found alongside reductions in osteoclast count and activity in the TRF mice. When compared to a baseline group of 10-week old mice, it was found that the TRF group had significantly less bone loss relative to the ad-libitum fed mice. Improvements in metabolic health, gut barrier function, and inflammation may have all contributed to the observed improvements in bone health. These results reveal a promising and previously unrecognized dietary tool to improve bone health and counteract age-related bone loss.
ContributorsJakiche, Michael (Author) / Collis, Graham (Co-author) / Roberts, Joseph (Thesis director) / Johnston, Carol (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2024-05