Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

148332-Thumbnail Image.png
Description

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy distributions (SEDs) of 43 SDF galaxies, including newly acquired data from the UKIRT WFCAM K-band for seven previously studied objects. In particular, modeling deep IR photometry is sensitive to the galaxy's Lyman continuum (LyC) escape fraction (fesc). We find the median implied fesc value as ~0.4+/-0.1 (mean error). Significant uncertainties in data and fitting result in a large range of fesc for individual objects, but analysis suggests that fesc is likely high enough for galaxies to finish reionization by z~6. More importantly, we find trends between the CIGALE UV slope b, fesc, and dust extinction E(B-V): for a given E(B-V), b appear steeper by ~0.4 than at z=0. Lower fesc values appear to be associated with bluer b and lower E(B-V), but only weakly. This suggests that LyC could have escaped through holes with sufficiently wide opening angles surrounding the ISM from outflows of supernovae and/or weak AGN to escape, but resulting in a large range of implied fesc values depending on the orientation of each galaxy. The current HST, Spitzer and ground-based photometric and model errors for the 43 galaxies are large, so IR spectroscopic observations with the James Webb Space Telescope are needed to better constrain this possibility.

ContributorsJeon, Junehyoung (Author) / Windhorst, Rogier (Thesis director) / Cohen, Seth (Committee member) / Jansen, Rolf (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132092-Thumbnail Image.png
Description
I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I

I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I used the M.E.S.A. stellar evolution code and was unable to reproduce this result. While M.E.S.A has undergone several updates since the previous result was obtained, more current evidence suggests that this may have been a one-time occurrence, as no helium white dwarfs were produced for low-metallicity models. Nonetheless, interesting results were obtained, including a lowest metallicity value for which CNO burning does not significantly contribute during the main sequence, 1 −10 Z , which produces noticeable effects on post main sequence evolution. All models are run with no rotation, one solar mass, and a series of MESA parameters kept constant, with the only exception being metallicity. Any metallicity value listed as Nd −10 is an absolute mass fraction, and Z is relative to solar metallicity, 2d*10 −2 .
ContributorsTompkins, Scott Andrew (Author) / Windhorst, Rogier (Thesis director) / Young, Patrick (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12