Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

147874-Thumbnail Image.png
Description

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.

ContributorsClark, Brian Vincent (Author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Keeler, Cynthia (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule is the most observed fragmentation pathway arising from the excitation

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule is the most observed fragmentation pathway arising from the excitation of the ground state parent molecule to a dissociative A state using two 400 nm, 3.1 eV pump photons. The dissociation energy of this pathway is 2.91 eV, leaving 3.3 eV of energy that is redistributed into the product fragments as vibrational energy. C4H9 has the highest relative intensity in the mass spectrum with a relative intensity of 1.00. It is followed by C2H5 and C2H4 at relative intensities of 0.73 and 0.29 respectively. Because of the negative correlation between C4H9 and these two fragments at positive time delays, it is concluded that most of these smaller molecules are formed from the further dissociation of the fragment C4H9 rather than any alternative pathways from the parent molecule. Thermodynamic analysis of these pathways has displayed the power of thermodynamic prediction as well as its limitations as it fails to consider kinetic limitations in dissociation reactions.

ContributorsGosman, Robert (Author) / Sayres, Scott (Thesis director) / Chizmeshya, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2023-05
132590-Thumbnail Image.png
Description
Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.
ContributorsWala, Ryland Gerald (Co-author) / Wala, Ryland (Co-author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Drucker, Jeffery (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Physics (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05