Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description

Advances in photoinjector technology have given rise to applications such as XFELs, UED, and UEM. Brighter electron beams from the source increase pulse energies and photon lasing energies for XFELs, as well as an increase in coherence lengths at femtosecond timescales on the Ultrafast Electron technologies. Deeper investigations of the

Advances in photoinjector technology have given rise to applications such as XFELs, UED, and UEM. Brighter electron beams from the source increase pulse energies and photon lasing energies for XFELs, as well as an increase in coherence lengths at femtosecond timescales on the Ultrafast Electron technologies. Deeper investigations of the photoemission process have placed stringent requirements on electron sources for next generation electron accelerator technology, and certain novel photocathode sources have been identified as candidates to satisfy these required specifications. At Arizona State University, a cryogenically cooled 200 kV DC electron gun and accompanying photocathode diagnostics beamline was developed and conditioned specifically to implement these novel photocathodes and provide diagnostics for their performance.

ContributorsSarabia Cardenas, Carlos (Author) / Karkare, Siddharth (Thesis director) / Gevorkyan, Gevork (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2023-05