Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

131428-Thumbnail Image.png
Description
The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the

The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the geometry alters the standing wave microwave energy resonance within the cavities and leads to reflected rather than coupled and useful microwave energy to electric field coupling. This disturbs the electron bunch acceleration dynamics critical to the ultimate generation of x-ray pulses. Cooling water must be supplied to the electron generating RF-GUN, and linear accelerator (LINAC) structures at unique flowrate and temperature setpoints that are specific to the operating mode of the CXFEL. Design specifications for the water supply to the RF-GUN and three LINACs and were made for the nominal operating mode, which adds a 3 kW heat load to the water. To maintain steady cavity dimensions, water must be supplied to each device under test at 30.0 ºC ± 0.06 ºC. The flowrate of water must be 3.5 GPM to the RF-GUN and 2.5 GPM to each of the three LINACs with ± 0.01 GPM flowrate resolution. The primary function of the Dedicated-Precision Thermal Trim Unit (D-PTTU) is to control the flowrate and temperature of water supply to each device under test. A simplified model of the system was developed to select valves that would meet our design specifications for flowrate and temperature control. After using this model for valve selection, a detailed system model was created to simulate relevant coupled-domain physics of the integrated system. The detailed system model was used to determine the critical sensitivities of the system and will be used to optimize the performance of the system in the future. Before the detailed system model can be verified and tuned with experiments, the sensors were calibrated in an ice-bath to ensure the sensors measure accurate and precise values. During initial testing, the D-PTTU was able to achieve ± 0.02 ºC temperature resolution, which exceeds the design specification by a factor of three.
ContributorsGardeck, Alex John (Author) / Holl, Mark (Thesis director) / Smith, Dean (Committee member) / Department of Physics (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05