Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

131401-Thumbnail Image.png
Description
This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest known factoring algorithms today. Factoring large integers into prime factors is an extremely difficult problem, yet also extremely important in

This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest known factoring algorithms today. Factoring large integers into prime factors is an extremely difficult problem, yet also extremely important in cryptography. The security of the cryptosystem RSA is entirely based on the difficulty of factoring certain large integers into a product of two distinct large primes. While the number field sieve is one of the fastest factoring algorithms known, it is still not efficient enough to factor cryptographic sized integers.

In this thesis we will examine the algorithm of the number field sieve and discuss some important advancements. In particular, we will focus on the advancements that have been done in the polynomial selection step, the first main step of the number field sieve. The polynomial selected determines the number field by which computations are carried out in the remainder of the algorithm. Selection of a good polynomial allows for better time efficiency and a higher probability that the algorithm will be successful in factoring.
ContributorsLopez, Rose Eleanor (Co-author) / Lopez, Rose (Co-author) / Childress, Nancy (Thesis director) / Jones, John (Committee member) / Pomerance, Carl (Committee member) / School of Music (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131186-Thumbnail Image.png
Description
Similar to the real numbers, the p-adic fields are completions of the rational numbers. However, distance in this space is determined based on divisibility by a prime number, p, rather than by the traditional absolute value. This gives rise to a peculiar topology which offers significant simplifications for p-adic continuous

Similar to the real numbers, the p-adic fields are completions of the rational numbers. However, distance in this space is determined based on divisibility by a prime number, p, rather than by the traditional absolute value. This gives rise to a peculiar topology which offers significant simplifications for p-adic continuous functions and p-adic integration than is present in the real numbers. These simplifications may present significant advantages to modern physics – specifically in harmonic analysis, quantum mechanics, and string theory. This project discusses the construction of the p-adic numbers, elementary p-adic topology, p-adic continuous functions, introductory p-adic measure theory, the q-Volkenborn distribution, and applications of p-adic numbers to physics. We define q-Volkenborn integration and its connection to Bernoulli numbers.
ContributorsBurgueno, Alyssa Erin (Author) / Childress, Nancy (Thesis director) / Jones, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor, Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05