Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

136615-Thumbnail Image.png
Description
As an example of "big data," we consider a repository of Arctic sea ice concentration data collected from satellites over the years 1979-2005. The data is represented by a graph, where vertices correspond to measurement points, and an edge is inserted between two vertices if the Pearson correlation coefficient between

As an example of "big data," we consider a repository of Arctic sea ice concentration data collected from satellites over the years 1979-2005. The data is represented by a graph, where vertices correspond to measurement points, and an edge is inserted between two vertices if the Pearson correlation coefficient between them exceeds a threshold. We investigate new questions about the structure of the graph related to betweenness, closeness centrality, vertex degrees, and characteristic path length. We also investigate whether an offset of weeks and years in graph generation results in a cosine similarity value that differs significantly from expected values. Finally, we relate the computational results to trends in Arctic ice.
ContributorsDougherty, Ryan Edward (Author) / Syrotiuk, Violet (Thesis director) / Colbourn, Charles (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
132876-Thumbnail Image.png
Description
When designing screening experiments for many factors, two problems quickly arise. The first is that testing all the different combinations of the factors and interactions creates an experiment that is too large to conduct in a practical amount of time. One way this problem is solved is with

When designing screening experiments for many factors, two problems quickly arise. The first is that testing all the different combinations of the factors and interactions creates an experiment that is too large to conduct in a practical amount of time. One way this problem is solved is with a combinatorial design called a locating array (LA) which can efficiently identify the factors and interactions most influential on a response. The second problem is how to ensure that combinations that prohibit some particular tests are absent, a requirement that is common in real-world systems. This research proposes a solution to the second problem using constraint satisfaction.
ContributorsMiller, Vincent Joseph (Author) / Syrotiuk, Violet (Thesis director) / Colbourn, Charles (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137627-Thumbnail Image.png
Description
Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity

Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity to use metrics such as clustering coefficients and connected components to isolate representative trends in ice masses. Based upon this analysis, the structure of sea ice graphs differs at a statistically significant level from random graphs, and several regions show erratically decreasing trends in sea ice concentration.
ContributorsWallace-Patterson, Chloe Rae (Author) / Syrotiuk, Violet (Thesis director) / Colbourn, Charles (Committee member) / Montgomery, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135810-Thumbnail Image.png
Description
The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due

The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due to a lack of suitable hardware. This thesis presents a proof-of-concept implementation of the meta-MAC protocol by utilizing a programmable radio platform, the Wireless MAC Processor (WMP), in combination with a host-level software module. The implementation of this host module, and the requirements and challenges faced therein, is the primary subject of this thesis. This implementation can combine, with certain constraints, a set of protocols each represented as an extended finite state machine for easy programmability. To illustrate the combination principle, protocols of the same type but with varying parameters are combined in a testbed environment, in what is termed parameter optimization. Specifically, a set of TDMA protocols with differing slot assignments are experimentally combined. This experiment demonstrates that the meta-MAC implementation rapidly converges to non-conflicting TDMA slot assignments for the nodes, with similar results to those in simulation. This both validates that the presented implementation properly implements the meta-MAC protocol, and verifies that the meta-MAC protocol can be as effective on real wireless hardware as it is in simulation.
ContributorsFlick, Nathaniel Graham (Author) / Syrotiuk, Violet (Thesis director) / Fainekos, Georgios (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05