Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

133186-Thumbnail Image.png
Description
Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic

Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic events, chapter meetings, rituals, recruitment events, etc. often reflects the state of the organization. The purpose of this project is to create a web application that allows members of an Arizona State University sorority to view their involvement activity as outlined by the chapter. Maintaining the balance between academics, sleep, a social life, and extra-curricular activities/organizations can be difficult for college students. With the use of this website, members can view their attendances, absences, and study/volunteer hours to know their progress towards the involvement requirements set by the chapter. This knowledge makes it easier to plan schedules and alleviate some stress associated with the time-management of sorority events, assignments/homework, and studying. It is also designed for the sorority leadership to analyze and track the participation of the membership. Members can submit their participation in events, making the need for manual counting and calculations disappear. The website administrator(s) can view and approve data from any and all members. The website was developed using HTML, CSS, and JavaScript in conjunction with Firebase for the back-end database. Human-Computer Interaction (HCI) tools and techniques were used throughout the development process to aide in prototyping, visual design, and evaluation. The front-end appearance of the website was designed to mimic the data manipulation used in the current involvement tracking system while presenting it in a more personalized and aesthetically pleasing manner.
ContributorsKolker, Madysen (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133624-Thumbnail Image.png
Description
This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical

This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical therapist to represent an exercise session involving the user's hand and finger joints as a series of patterns. Fine motor rehabilitation plays an important role in the recovery and improvement of the effects of stroke, Parkinson's disease, multiple sclerosis, and more. Individuals with these conditions possess a wide range of impairment in terms of fine motor movement. The serious game developed takes this into account and is designed to work with individuals with different levels of impairment. In a pilot study, under partnership with South West Advanced Neurological Rehabilitation (SWAN Rehab) in Phoenix, Arizona, we compared the performance of individuals with fine motor impairment to individuals without this impairment to determine whether a human-centered approach and adapting to an user's range of motion can allow an individual with fine motor impairment to perform at a similar level as a non-impaired user.
ContributorsShah, Vatsal Nimishkumar (Author) / McDaniel, Troy (Thesis director) / Tadayon, Ramin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133018-Thumbnail Image.png
Description
This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia,

This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia, but they are not guaranteed to work for every patient. Few apps exist to help patients with their therapy, so this paper describes the design and creation of a new website that combines exposure therapy,
relaxation, and gamification to help patients alleviate their misophonic reflexes.
ContributorsNoziglia, Rachel Elisabeth (Author) / McDaniel, Troy (Thesis director) / Anderson, Derrick (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148244-Thumbnail Image.png
Description

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing a small and large explosion and a box interaction scene that allowed the participants to touch the box virtually with their hand. At the start of this project, it was hypothesized that the haptic glove would have a significant positive impact in at least one of these scenarios. Nine participants took place in the study and immersion was measured through a post-experiment questionnaire. Statistical analysis on the results showed that the haptic glove did have a significant impact on immersion in the box interaction scene, but not in the explosion scene. In the end, I conclude that since this haptic glove does not significantly increase immersion across all scenarios when compared to the standard Vive controller, it should not be used at a replacement in its current state.

ContributorsGriffieth, Alan P (Author) / McDaniel, Troy (Thesis director) / Selgrad, Justin (Committee member) / Computing and Informatics Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Games have traditionally had a high barrier to entry because they necessitate unique input devices, fast reaction times, high motor skills, and more. There has recently been a push to change the design process of these games to include people with disabilities so they can interact with the medium of

Games have traditionally had a high barrier to entry because they necessitate unique input devices, fast reaction times, high motor skills, and more. There has recently been a push to change the design process of these games to include people with disabilities so they can interact with the medium of games as well. This thesis examines the current guiding principles of accessible design, who they are being developed by, and how they might help guide future accessible design and development. Additionally, it will look at modern games with accessibility features and classify them in terms of the Game Accessibility Guidelines. Then, using an interview with a lead developer at a game studio as aid, there will be an examination into modern game industry practices and what might be holding developers or studios back when it comes to accessible design. Finally, further suggestions for these developers and studios will be made in order to help them and others improve in making their games more accessible to people with disabilities.

ContributorsDavis, Robert (Author) / McDaniel, Troy (Thesis director) / Selgrad, Justin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School for the Future of Innovation in Society (Contributor)
Created2023-05
131996-Thumbnail Image.png
Description
Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the

Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the transitions between nodes. While the speech is easy to understand, readers can be overwhelmed by too much speech and may not be able to discern any structural patterns which occur in the graphs. Considering these limitations, this research seeks to find ways to better present transitions in node graphs.

This study aims to gain knowledge on how sequence patterns in node graphs can be perceived through speech and nonspeech audio. Users listened to short audio clips describing a sequence of transitions occurring in a node graph. User study results were evaluated based on accuracy and user feedback. Five common techniques were identified through the study, and the results will be used to help design a node graph tool to improve accessibility of node graph creation and exploration for individuals that are blind or visually impaired.
ContributorsDarmawaskita, Nicole (Author) / McDaniel, Troy (Thesis director) / Duarte, Bryan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132065-Thumbnail Image.png
Description
This paper presents a study done to gain knowledge on the communication of an object’s relative 3-dimensional position in relation to individuals who are visually impaired and blind. The HapBack, a continuation of the HaptWrap V1.0 (Duarte et al., 2018), focused on the perception of objects and their distances in

This paper presents a study done to gain knowledge on the communication of an object’s relative 3-dimensional position in relation to individuals who are visually impaired and blind. The HapBack, a continuation of the HaptWrap V1.0 (Duarte et al., 2018), focused on the perception of objects and their distances in 3-dimensional space using haptic communication. The HapBack is a device that consists of two elastic bands wrapped horizontally secured around the user’s torso and two backpack straps secured along the user’s back. The backpack straps are embedded with 10 vibrotactile motors evenly positioned along the spine. This device is designed to provide a wearable interface for blind and visually impaired individuals in order to understand how the position of objects in 3-dimensional space are perceived through haptic communication. We were able to analyze the accuracy of the HapBack device through three vectors (1) Two different modes of vibration – absolute and relative (2) the location of the vibrotactile motors when in absolute mode (3) and the location of the vibrotactile motors when in relative mode. The results provided support that the HapBack provided vibrotactile patterns that were intuitively mapped to distances represented in the study. We were able to gain a better understanding on how distance can be perceived through haptic communication in individuals who are blind through analyzing the intuitiveness of the vibro-tactile patterns and the accuracy of the user’s responses.
ContributorsLow, Allison Xin Ming (Author) / McDaniel, Troy (Thesis director) / Duarte, Bryan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
As modern advancements in medical technology continue to increase overall life expectancy, hospitals and healthcare systems are finding new and more efficient ways of storing extensive amounts of patient healthcare information. This progression finds people increasingly dependent on hospitals as the primary providers of medical data, ranging from immunization records

As modern advancements in medical technology continue to increase overall life expectancy, hospitals and healthcare systems are finding new and more efficient ways of storing extensive amounts of patient healthcare information. This progression finds people increasingly dependent on hospitals as the primary providers of medical data, ranging from immunization records to surgical history. However, the benefits of carrying a copy of personal health information are becoming increasingly evident. This project aims to create a simple, secure, and cohesive application that stores and retrieves user health information backed by Google’s Firebase cloud infrastructure. Data was collected to both explore the current need for such an application, and to test the usability of the product. The former was done using a multiple-choice survey distributed through social media to understand the necessity for a patient-held health file (PHF). Subsequently, user testing was performed with the intent to track the success of our application in meeting those needs. According to the data, there was a trend that suggested a significant need for a healthcare information storage device. This application, allowing for efficient and simple medical information storage and retrieval, was created for a target audience of those seeking to improve their medical information awareness, with a primary focus on the elderly population. Specific correlations between the frequency of physician visits and app usage were identified to target the potential use cases of our app. The outcome of this project succeeded in meeting the significant need for increased patient medical awareness in the healthcare community.
ContributorsUpponi, Rohan Sachin (Co-author) / Somayaji, Vasishta (Co-author) / McDaniel, Troy (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05