Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 71
Filtering by

Clear all filters

147884-Thumbnail Image.png
Description

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question what should be done. There are unique ethical considerations in regards to affective computing that haven't been explored. The purpose of this study is to understand the user’s perspective of affective computing in regards to the Association of Computing Machinery (ACM) Code of Ethics, to ultimately start developing a better understanding of these ethical concerns. For this study, participants were required to watch three different videos and answer a questionnaire, all while wearing an Emotiv EPOC+ EEG headset that measures their emotions. Using the information gathered, the study explores the ethics of affective computing through the user’s perspective.

ContributorsInjejikian, Angelica (Author) / Gonzalez-Sanchez, Javier (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147891-Thumbnail Image.png
Description

Cryptojacking is a process in which a program utilizes a user’s CPU to mine cryptocurrencies unknown to the user. Since cryptojacking is a relatively new problem and its impact is still limited, very little has been done to combat it. Multiple studies have been conducted where a cryptojacking detection system

Cryptojacking is a process in which a program utilizes a user’s CPU to mine cryptocurrencies unknown to the user. Since cryptojacking is a relatively new problem and its impact is still limited, very little has been done to combat it. Multiple studies have been conducted where a cryptojacking detection system is implemented, but none of these systems have truly solved the problem. This thesis surveys existing studies and provides a classification and evaluation of each detection system with the aim of determining their pros and cons. The result of the evaluation indicates that it might be possible to bypass detection of existing systems by modifying the cryptojacking code. In addition to this classification, I developed an automatic code instrumentation program that replaces specific instructions with functionally similar sequences as a way to show how easy it is to implement simple obfuscation to bypass detection by existing systems.

ContributorsLarson, Kent Merle (Author) / Bazzi, Rida (Thesis director) / Shoshitaishvili, Yan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147904-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMarkabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Lobo, Ian (Co-author) / Koleber, Keith (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147905-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMasud, Abdullah Bin (Co-author) / Koleber, Keith (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsSchulte, Brooke (Co-author) / Recato, Bella (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147915-Thumbnail Image.png
Description

Neoliberal feminism has gained significant popularity in fourth-wave feminist media. In this paper, I analyze the 2017 limited television series "Big Little Lies" to uncover the intricacies of neoliberal feminist theory in practice, particularly how it speaks to gender, race, and class relations.

ContributorsLuther, Molly E (Author) / Moran, Stacey (Thesis director) / Henderson-Singer, Sharon (Committee member) / Arts, Media and Engineering Sch T (Contributor) / School of Social Transformation (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147918-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsKoleber, Keith M. (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsBabbepalli Venkata, Sai Sandilya (Co-author) / Raka, Khyati (Co-author) / Banerjee, Ayan (Thesis director) / Finn, Edward (Thesis director) / Fortunato, Joseph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

ContributorsLi, Vincent (Author) / Turaga, Pavan (Thesis director) / Buman, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148474-Thumbnail Image.png
Description

One obstacle which children with autism spectrum disorders (ASDs) face when learning in a public-school environment is the lack of feeling included when learning. In this study, the term inclusion refers to time that children with ASDs spend in general education settings, interacting and/or engaging with neurotypical students and teachers.

One obstacle which children with autism spectrum disorders (ASDs) face when learning in a public-school environment is the lack of feeling included when learning. In this study, the term inclusion refers to time that children with ASDs spend in general education settings, interacting and/or engaging with neurotypical students and teachers. Inclusion can help students with ASDs improve their social skills, as well as academic achievement, mental health, and future success (Camargo et al., 2014). Since children with ASDs often have difficulties with social interaction skills, this can prevent their successful inclusion in general education placements. Music is a type of behaviorally-based intervention, which has proven to be effective in helping students develop the skills necessary to be successfully included, and because it is a type of activity which can serve as a bit of a distraction from the social aspect of the interaction, it can help children practice social skills and interact in a comfortable way. This study examines how music is used in public school settings to help foster the skills necessary for autistic children to be involved in standard school curriculums in order to allow them to receive the full benefits from learning in a general education setting. This study was conducted by reviewing past literature on the benefits of inclusion in special education, the benefits of music for children with ASDs, and the difference in efficacy of music interventions when conducted in an inclusive setting. Interviews with special education teachers, music educators, and music therapists were also conducted to address examples of the impact of music in this research area. The study found that music is beneficial in allowing more students to be included in standard school curriculums, and data showed the trend that inclusion positively affected their social and academic development.

ContributorsVerma, Alisha (Author) / Kappes, Janelle (Thesis director) / Ruiz, Eugenia Hernandez (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05