Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

135581-Thumbnail Image.png
Description
As the need for data concerning the health of the world's oceans increases, it becomes necessary to develop large, networked communication systems underwater. This research involves the development of an embedded operating system that is suited for optically-linked underwater wireless sensor networks (WSNs). Optical WSNs are unique in that large

As the need for data concerning the health of the world's oceans increases, it becomes necessary to develop large, networked communication systems underwater. This research involves the development of an embedded operating system that is suited for optically-linked underwater wireless sensor networks (WSNs). Optical WSNs are unique in that large sums of data may be received relatively infrequently, and so an operating system for each node must be very responsive. Additionally, the volatile nature of the underwater environment means that the operating system must be accurate, while still maintaining a low profile on a relatively small microprocessor core. The first part of this research concerns the actual implementation of the operating system's task scheduler and additional libraries to maintain synchronization, and the second part involves testing the operating system for responsiveness to interrupts and overall performance.
ContributorsTueller, Peter Michael (Author) / Youngbull, Cody (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05