Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

134946-Thumbnail Image.png
Description
This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further

This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further analysis to contribute to the larger CySIS Lab Darkweb Cyber Threat Intelligence Mining research. We found that the I2P cryptonet was slow and had only a small amount of malicious hacking community activity. However, we also found evidence of a growing perception that Tor anonymity could be compromised. This work will contribute to understanding the malicious hacker community as some Tor users, seeking assured anonymity, transition to I2P.
ContributorsHutchins, James Keith (Author) / Shakarian, Paulo (Thesis director) / Ahn, Gail-Joon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133698-Thumbnail Image.png
Description
In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There

In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There are various methods for detecting whether two online users in a network are the same people in reality and the simplest way to utilize this information is to simply merge their identities and treat the two users as a single user. However, this then raises the issue of how we deal with these composite identities. To solve this problem, we introduce a mathematical abstraction for representing users and their identities as partitions on a set. We then define a similarity function, SIM, between two partitions, a set of properties that SIM must have, and a threshold that SIM must exceed for two users to be considered the same person. The main theoretical result of our work is a proof that for any given partition and similarity threshold, there is only a single unique way to merge the identities of similar users such that no two identities are similar. We also present two algorithms, COLLAPSE and SIM_MERGE, that merge the identities of users to find this unique set of identities. We prove that both algorithms execute in polynomial time and we also perform an experiment on dark web social network data from over 6000 users that demonstrates the runtime of SIM_MERGE.
ContributorsPolican, Andrew Dominic (Author) / Shakarian, Paulo (Thesis director) / Sen, Arunabha (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

For my Thesis Project, I worked to operationalize an algorithmic trading application called Trading Dawg. Over the year, I was able to implement several analysis models, including accuracy, performance, volume, and hyperparameter analysis. With these improvements, we are in a strong position to create valuable tools in the algorithmic trading

For my Thesis Project, I worked to operationalize an algorithmic trading application called Trading Dawg. Over the year, I was able to implement several analysis models, including accuracy, performance, volume, and hyperparameter analysis. With these improvements, we are in a strong position to create valuable tools in the algorithmic trading space.

ContributorsPayne, Colton (Author) / Shakarian, Paulo (Thesis director) / Brandt, William (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Finance (Contributor)
Created2023-05
Description

Historically, the predominant strategy for evaluating baseball pitchers has been through statistics created directly from the offensive production against the pitcher, such as ERA. Such statistics are inherently relative to the abilities and competition level of the opposing offense and the field defense, which the pitcher has no control over,

Historically, the predominant strategy for evaluating baseball pitchers has been through statistics created directly from the offensive production against the pitcher, such as ERA. Such statistics are inherently relative to the abilities and competition level of the opposing offense and the field defense, which the pitcher has no control over, making it difficult to compare pitchers across leagues. In this paper, I use cutting edge pitch-tracking data to develop a pitch evaluation model that is intrinsic to the attributes of the pitches themselves, and not influenced directly by the outcomes of each individual pitch. I train four different classifiers to predict the probability of each pitch belonging to different subsets of outcomes, then multiply the probability of each outcome by that outcome’s average run value to arrive at an expected run value for the pitch. I compare the performance of each classifier to a baseline, examine the most impactful features, and compare the top pitchers identified by the model to those identified by a different baseball statistics resource, ultimately concluding that three of the four classification models are productive and that the overall intrinsic evaluation model accurately identifies the sports top performers.

ContributorsSmith, Roman (Author) / Shakarian, Paulo (Thesis director) / Macdonald, Brian (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05