Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

135563-Thumbnail Image.png
Description
This dissertation details an attempt to experimentally evaluate the Giroud et al. (1995) concentration factors for geomembranes loaded in tension perpendicular to a seam by laboratory measurement. Field observations of the performance of geomembrane liner systems indicates that tears occur at average strains well below the yield criteria. These observations

This dissertation details an attempt to experimentally evaluate the Giroud et al. (1995) concentration factors for geomembranes loaded in tension perpendicular to a seam by laboratory measurement. Field observations of the performance of geomembrane liner systems indicates that tears occur at average strains well below the yield criteria. These observations have been attributed, in part, to localized strain concentrations in the geomembrane loaded in tension in a direction perpendicular to the seam. Giroud et al. (1995) has presented theoretical strain concentration factors for geomembrane seams loaded in tension when the seam is perpendicular to the applied tensile strain. However, these factors have never been verified. This dissertation was prepared in fulfillment of the requirements for graduation from Barrett, the Honors College at Arizona State University. The work described herein was sponsored by the National Science Foundation as a part of a larger research project entitled "NEESR: Performance Based Design of Geomembrane Liner Systems Subject to Extreme Loading." The work is motivated by geomembrane tears observed at the Chiquita Canyon landfill following the 1994 Northridge earthquake. Numerical analysis of the strains in the Chiquita Canyon landfill liner induced by the earthquake indicated that the tensile strains, were well below the yield strain of the geomembrane material. In order to explain why the membrane did fail, strain concentration factors due to bending at seams perpendicular to the load in the model proposed by Giroud et al. (1995) had to be applied to the geomembrane (Arab, 2011). Due to the localized nature of seam strain concentrations, digital image correlation (DIC) was used. The high resolution attained with DIC had a sufficient resolution to capture the localized strain concentrations. High density polyethylene (HDPE) geomembrane samples prepared by a leading geomembrane manufacturer were used in the testing described herein. The samples included both extrusion fillet and dual hot wedge fusion seams. The samples were loaded in tension in a standard triaxial test apparatus. to the seams in the samples including both extrusion fillet and dual hot wedge seams. DIC was used to capture the deformation field and strain fields were subsequently created by computer analysis.
ContributorsAndresen, Jake Austin (Author) / Kavazanjian, Edward (Thesis director) / Gutierrez, Angel (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135385-Thumbnail Image.png
Description
This thesis describes the conduct and interpretation of large scale direct shear testing of municipal solid waste (MSW) which was recently conducted at Arizona State University under the guidance of Dr. Edward Kavazanjian Jr. This research was performed to establish the shear strength parameters for MSW of a particular landfill

This thesis describes the conduct and interpretation of large scale direct shear testing of municipal solid waste (MSW) which was recently conducted at Arizona State University under the guidance of Dr. Edward Kavazanjian Jr. This research was performed to establish the shear strength parameters for MSW of a particular landfill in the eastern United States. As part of this research, the unit weight of the material of interest was recorded to help establish if the properties of the waste tested in this project were consistent with the properties of MSW reported in the technical literature.
The paper begins with an overview of scholarly articles on shear strength and unit weight of MSW. This overview summarizes trends found in other MSW investigations. The findings described in these articles served as a basis to determine if the direct shear test results in this investigation complied with typical values reported in other MSW investigations.
A majority of this thesis is dedicated to describing testing protocol, nuances of experimental execution, and test results of the direct shear tests. This culminates in an analysis of the shear strength parameters and consolidated unit weight exhibited by the MSW tested herein. Throughout the testing displacement range of 3.5 inches, none of the MSW specimens achieved a peak shear stress. Consequently, the test results were analyzed at displacements of 1.7 inches, 2.1 inches, and 2.4 inches during the tests to develop Mohr-Coulomb envelopes for each specified displacement. All three envelopes indicated that the cohesion of the material was effectively 0 psf). The interpreted angles of internal friction were of 30.6°, 33.7°, and 36.0° for the displacements of 1.7, 2.1, and 2.4 inches, respectively. These values correlate well with values from previous investigations, indicating that from a shear strength basis the waste tested in this project was typical of MSW from other landfills. Analysis of the consolidated unit weight of the MSW specimens also suggests the MSW was similar to in-situ MSW which was placed in a landfill with low levels of compaction and small amounts of cover soil.
ContributorsCuret, Dylan Shea (Author) / Kavazanjian, Edward (Thesis director) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
137640-Thumbnail Image.png
Description
After describing the types of foundation systems employed for high rise buildings, this thesis discusses the process of foundation design for tall buildings as it is practiced today, including computer programs used in designing the foundations of high rise buildings. This thesis then presents the geotechnical in-situ and laboratory tests

After describing the types of foundation systems employed for high rise buildings, this thesis discusses the process of foundation design for tall buildings as it is practiced today, including computer programs used in designing the foundations of high rise buildings. This thesis then presents the geotechnical in-situ and laboratory tests used to establish the parameters required for input to design analyses for high rise building foundations. This thesis subsequently describes the Construction Quality Assurance practices used in the construction of the foundations of high rise buildings. This thesis next presents several case histories detailing the foundation practices employed in the design and construction of modern high rise buildings. Finally, this thesis provides some concluding thoughts regarding the development of the geotechnical practices when designing and constructing high rise buildings.
ContributorsMohammad, Saeed Ishaq (Author) / Kavazanjian, Edward (Thesis director) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
135754-Thumbnail Image.png
Description
This dissertation investigates the potential for stimulating ureolytic and denitrifying microbes concurrently (i.e., stimulating a ureolytic, denitrifying microbial community) for a more efficient microbially induced carbonate precipitation (MICP) process. Three sand columns were run for a treatment period of six weeks with a continuous flow of nutrient solution containing calcium

This dissertation investigates the potential for stimulating ureolytic and denitrifying microbes concurrently (i.e., stimulating a ureolytic, denitrifying microbial community) for a more efficient microbially induced carbonate precipitation (MICP) process. Three sand columns were run for a treatment period of six weeks with a continuous flow of nutrient solution containing calcium nitrate, calcium acetate, calcium chloride, magnesium sulfate, tryptic soy broth and trace metals. The first and third columns served as control columns, within which only denitrification processes were at work. The first column was used for periodic sampling to measure the pH, ion concentrations, and total nitrogen over time. The third column was used to measure compressional (P-) and shear (S-) wave velocities to monitor cementation and desaturation over time. The second column was subject to initial conditions identical to the other two columns except that urea was added to the nutrient solution to stimulate ureolysis and was also subject to sampling. This was done to determine whether the use of the combined MICP processes resulted in increased efficiency of precipitation. Results from ion chromatography analysis, acid digestion and scanning electron microscope imaging did not show an increase in the amount of carbonate precipitated for the second column, possibly due to nitrite inhibition and abiotic hydrolysis of the urea from sterilization of the nutrient solution through autoclaving. However, the stimulation of denitrification and ureolysis in combination was achieved, and the amount of carbonate precipitation per mol of nitrate reduced increased, which in a sense increased the efficiency of the system. Ultimately, more experimentation is needed to determine if this combination is beneficial for MICP.
ContributorsOchsenbein, Amelia Dell (Author) / Kavazanjian, Edward (Thesis director) / O'Donnell, Sean (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05