Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

134310-Thumbnail Image.png
Description
The Prestige Worldwide Resort and development area will be constructed to the east of Scottsdale Rd and North of the 101 loop. The development area is composed of 442.58 acres of land within 9 parcels. Zoning for this development area consists of commercial, recreational, golf course, residential, and water/wastewater treatment.

The Prestige Worldwide Resort and development area will be constructed to the east of Scottsdale Rd and North of the 101 loop. The development area is composed of 442.58 acres of land within 9 parcels. Zoning for this development area consists of commercial, recreational, golf course, residential, and water/wastewater treatment. The main feature of the development area is a luxury resort to be located at the southwest corner of Legacy Blvd and Hayden Rd. The resort includes a large pond over which the entrance road traverses. The resort also includes an 18-hole golf course located just north of Legacy Blvd. The proposed residential area is to the east of Hayden Rd on the northern half of the site. Along the northeastern border of this residential area are APS, SRP, and Bureau of Reclamation easements. A recreational area in the form of a park is proposed to the east and west of the southern portion of N Hayden Rd on the site. The southeast corner or the site is reserved for water and wastewater treatment. The southwest corner of the site is for commercial use with an additional recreational/sporting area just to the north of this commercial area. The key feature of the resort is its luxurious eight-story hotel along with two other hotel buildings that accommodate tourists who are visiting Scottsdale. The main hotel includes 210 rooms to provide enough housing for these tourists and acquire more attraction to Scottsdale. The composition of the hotel consists of the first floor being the lobby and a recreational area. The other floors each contain 30 rooms, 3 elevators, and a staircase. Surrounding the hotel is a parking lot for the hotel guests and people attending events hosted at the hotel. Regarding the hotel specifications, two different alternative designs were produced to determine the ideal steel member type, concrete reinforcement, and the steel frame layout. The final hotel design was determined by which alternative had the lowest structural response from loading and cost effective.
ContributorsCastro, Cesar Aaron (Author) / Fox, Peter (Thesis director) / Templeton, Stephanie (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134325-Thumbnail Image.png
Description
This thesis project examines the likely factors that cause students to drop out of Barrett, the Honors College. Honors literature regarding retention and attrition suggests four areas encompassing individual student attributes and honors program characteristics which may impact a student's decision to stay or leave an Honors College. The primary

This thesis project examines the likely factors that cause students to drop out of Barrett, the Honors College. Honors literature regarding retention and attrition suggests four areas encompassing individual student attributes and honors program characteristics which may impact a student's decision to stay or leave an Honors College. The primary question in focus is, "Why do students leave the Honors College?" followed by the tertiary questions of, "what can be done to mitigate this occurrence?" and, "how does this affect the quality of an honors education?" Assessing attrition can be broken down into biographical, cognitive-behavioral, socio-environmental, and institutional-instrumental components. Students who graduated with honors and those who did not graduate with honors were assessed on these four components through survey methods and qualitative interviews to investigate specific reasons why students leave the honors program. The results indicated a wide array of reasons impacting student attrition, the most significant being negative perceptions towards (1) honors courses and contracts, (2) difficulty completing a thesis project, and (3) finding little to no value in "graduating with honors." Each of these reasons reflect the institutional-instrumental component of student attrition, making it the most salient group of reasons why students leave the Honors College. The socio-environmental component also influences student attrition through peer influence and academic advisor support, though this was found to be within the context of institutional-instrumental means. This project offers solutions to ameliorate each of the four components of attrition by offering standardized honors contracts and more mandatory honors classes, mandatory thesis preparatory courses instead of workshops, and emphasizing the benefit Barrett gives to students as a whole. These solutions aim at increasing graduation rates for future honors students at Barrett as well as improving the overall quality of an honors education.
ContributorsSanchez, Gilbert Xavier (Author) / Parker, John (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Criminology and Criminal Justice (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134610-Thumbnail Image.png
Description
Undergraduate on-campus residential education is a topic of significant inquiry within the field of higher education, and specifically student affairs. It has become commonplace for institutions of higher education in the United States to leverage the intersections between academics and residence life in order to promote student success by offering

Undergraduate on-campus residential education is a topic of significant inquiry within the field of higher education, and specifically student affairs. It has become commonplace for institutions of higher education in the United States to leverage the intersections between academics and residence life in order to promote student success by offering on-campus housing options that strategically place students in residential communities that provide additional connection to the students' academic experience, often by major, college, department, or other focus areas. Such models vary by institution, but are often referred to as living-learning communities or residential colleges, depending upon their structure and goals. For example, Barrett, the Honors College on the Tempe campus of Arizona State University implements a residential college model within its student housing; honors students live and study together, with the addition of three "special communities" designed for students majoring in Engineering, Business, or the Arts. This honors thesis case study describes and investigates the impact the visual and performing arts Barrett residential community has upon its residents in their first-year college experience. Through the lens of student development theory, this research focuses upon examining this specific residential community in detail in order to gain an understanding of its effect upon residents' academic and personal well being.
ContributorsBieschke, Sara Danielle (Author) / O'Flaherty, Katherine (Thesis director) / Rendell, Dawn (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134395-Thumbnail Image.png
Description"Writing the Races" is a documentary exploring how two writers talk about race in their comedy television shows. http://www.writingtheraces.com/
ContributorsTyau, Nicole Jenice (Author) / Rodriguez, Rick (Thesis director) / O'Flaherty, Katherine (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134749-Thumbnail Image.png
Description
The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects of the urban heat island for the city of Phoenix.

The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects of the urban heat island for the city of Phoenix. Current strategies, case studies, and the ENVI-Met modeling software were used to finalize conclusions and suggestions to further progress Phoenix's goals in combating its urban heat island. Results from the studies found that there is much potential in reducing daytime and evening temperatures through improving infrastructure by means of increased vegetation in the forms of green roofs and walls, reducing anthropogenic heat release, improving artificial surface coverage, and implementing lasting policies for further development. Results from the ENVI-met microclimate program shows areas for further research in urban heat island mitigation strategies.
Created2016-12
134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Created2016-12
134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
ContributorsHansen, Hannah Elizabeth (Author) / Parrish, Kristen (Thesis director) / Bryan, Harvey (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134474-Thumbnail Image.png
Description
The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the

The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the only alternative for some manufactures because there is no viable option for silicon wafers. Solar panel installations started to peak in the early 1990's . With the lifespan of a solar panel being 25 years, recycling these panel is not a priority task in government policies. First Solar is currently the only company in the United States that executes the full recycling process. However, there is an environmental hotspot and an energy intensity phase identified in their process. The second stage in First Solar's recycling method consist of hammering and shredding the solar panel to reduce the surface area to then move on the chemical path stage. This stage currently uses 1.1 kWh for a meter by meter solar cell. A thermal processing method was explored and found to be the most environmentally conscious chose in terms of emissions and energy cost. The thermal method uses a conventional furnace to burn away the EVA, leaving the internal components of the cell intact and ready for the remaining process of recycling. SLICE method aims to introduce an industry tailored, low energy cost process, that initiates a solar panel recycling infrastructure in the United States. The recycling infrastructure is needed to sustain the exponential growth of solar panels and avoid third party recycling to developing countries. This new method transitions from lab tested batch processes to a continuous process.
ContributorsMartinez, Mariana (Co-author) / Grayson, Madison (Co-author) / Seager, Thomas (Thesis director) / Ravikumar, Dwarak (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134500-Thumbnail Image.png
Description
Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical

Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical illusions, Legos, and the instructor's vulnerability to tackle unconscious bias in a way that addresses the barriers in engineering culture that prevent engineers from learning social science issues. Unconscious bias has documented long-term negative impacts on success and personal development, even in engineering environments. Creating a module in engineering education that addresses unconscious bias with the aim of reducing the negative effects of bias would benefit developing engineers by improving product development and team diversity. Engineering culture fosters disengagement with social issues through three pillars: depoliticization, technical/social dualism, and meritocracy. The developed curriculum uses optical illusions and Legos as proxies to start discussions about unconscious bias. The proxies allow engineers to explore their own biases without running into one of the pillars of disengagement that limits the engineer's willingness to discuss social issues. The curriculum was implemented in the Fall of 2017 in an upper-division engineering classroom as a professional communication module. The module received qualitatively positive feedback from fellow instructors and students. The curriculum was only implemented once by the author, but future implementations should be done with a different instructor and using quantitative data to measure if the learning objectives were achieved. Appendix A of the paper contains a lesson plan of the module that could be implemented by other instructors.
Created2017-05