Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
133118-Thumbnail Image.png
Description
Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental

Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental Protection Agency and enforced by state and local agencies. Current practice consists of either relatively continuous application of potable water, a valuable resource, or application of expensive polymers, however, water application is considered the best available technology (BAT). The new technology, developed by the Center of Bio-medicated and Bio-inspired Geotechnics at Arizona State University, consists of application of Enzyme-Induced Carbonate Precipitate (EICP) to create an erosion-resistant crust. This crust is considered a "one and done" solution, until it is disturbed, however will last longer and stay more effective than quickly evaporating water. Future work will need to include how much disturbance is required to disturb the crust until ineffective towards mitigating fugitive dust. Results of the comparison show that a single EICP treatment produces 37 times less pollutants, uses 41 times less water and is 1.14 times cheaper than using water treatment to mitigate fugitive dust on a 7 acre site for 2 weeks (14 days). 14 days is the threshold at where EICP treatment becomes less expensive than water application for the purpose of mitigating fugitive dust. The EICP treatment benefits include lowering global warming inducing emissions, providing better air quality, becoming more cost effective, staying constantly effective to mitigate fugitive dust, and saving potable water.
ContributorsFabian, Aaron Jacob (Author) / Fox, Peter (Thesis director) / Kavazanjian, Edward (Thesis director) / Woolley, Miriam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper sourced from hemp & agricultural waste. Agrix Paper will reinvent the papermaking process for a more sustainable industry future.

ContributorsBarraza-Córdova, Erik (Author) / Byrum, Emily (Co-author) / DiFernando, Anthony (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
166030-Thumbnail Image.png
Description
When you get to a point in your day where you need a drink of water, what type of bottle do you reach for? A plastic bottle? In the US alone, over 500 billion bottles are used daily (or in a year), and this leads to an exorbitant amount of

When you get to a point in your day where you need a drink of water, what type of bottle do you reach for? A plastic bottle? In the US alone, over 500 billion bottles are used daily (or in a year), and this leads to an exorbitant amount of plastic waste that ends up in landfills, oceans, and finally, our bodies. Uni Flask is a unique solution tailored to meet the needs of college students throughout the US. Through the pairing of reusable, university themed bottles with our daily reminders and challenges, eliminating plastic waste is at the heart of our group's solution. The themed bottles will be available to not just students, but to anyone who is interested. The reminders you receive can be modified to your exact needs, and can be sent daily, weekly, or even monthly. Regardless of which option you choose, our team will include you in any competitions and challenges available, as our goal at Uni Flask is to not only cut down on plastic waste and consumption, but to help you achieve a healthier, hydrated lifestyle.
ContributorsOwen, Alexander (Author) / Algibez Flores, Lola (Co-author) / Mohandes, Nasim (Co-author) / Li, Amanda (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2022-05